Determination of Water- and Fat-Soluble Vitamins in Different Matrices Using High-Performance Liquid Chromatography

^{a, b}A. JEDLIČKA and ^aJ. KLIMEŠ

^aDepartment of Pharmaceutical Chemistry and Drug Control, Faculty of Pharmacy, Charles University, CZ-500 02 Hradec Králové, Czech Republic

^bZentiva, a.s., CZ-102 37 Prague, Czech Republic

Received 22 January 2004

High-performance liquid chromatographic methods are the most often used methods for the determination of water-soluble vitamins (WSV) and fat-soluble vitamins (FSV). General approaches in quantification, occurring forms of vitamins, influences, which can affect stability of vitamins, necessary precautions in sample handling, pre-run sample stabilization, extractions procedures, and HPLC quantifications are mentioned and compared. This paper provides basic guidance for using HPLC in analysis of WSV and FSV. Finally, some methods for the quantification of WSV and FSV in pharmaceutical preparations, food supplements, and biological samples are reviewed.

Abbreviations used in the text:

AA: Ascorbic acid, ACN: Acetonitrile, BHT: Butylated hydroxytoluene, CT: Column temperature, D₂: Ergocalciferol, D₃: Cholecalciferol, DHAA: Dehydroascorbic acid, DHIAA: Dehydroisoascorbic acid, ECD: Electrochemical detection, EmW: Emission wavelength, Et₂O: Diethyl ether, EtOH: Ethanol, ExcW: Excitation wavelength, FAD: Flavin adenine dinucleotide, FLD: Fluorescence detection, FMN: Flavin mononucleotide, FR: Flow rate, FSV: Fat-soluble vitamins, HPLC: High-performance liquid chromatography, IAA: Isoascorbic acid, IPOH: Isopropanol, IS: Internal standard, IV: Injection volume, LLE: Liquid-liquid extraction, LoD: Limit of detection, LoQ: Limit of quantification, MeOH: Methanol, MP: Mobile phase, NAD: Nicotinamide adenine dinucleotide, NADP: Nicotinamide adenine dinucleotide phosphate, RID: Refractometric detection, RP: Reversed phase, SAX: Strong anion exchanger, SFE: Supercritical fluid extraction, SPE: Solid-phase extraction, TCA: Trichloroacetic acid, TEA: Triethylamine, TFA: Trifluoroacetic acid, UVD: Ultraviolet detection, WSV: Water-soluble vitamins.

1. INTRODUCTION

As generally known, vitamins are essential substances, which are necessary for normal health and growth and in sufficient amounts should be supplied by food. If this intake is insufficient or if special dietary requirements exist, multivitamin preparation should be taken in order to prevent vitamin deficiency. Numerous such preparations, often formulated as filmcoated dragee or effervescent, are available on the market.

Requirement on sufficient input of vitamins and hence, keeping health of individual, results in a need for accurate quantitative measurements of vitamins in food. Likewise the content of vitamins in pharmaceutical preparations needs to be checked in order to ensure correct intake and the accuracy of the label statements. Loss of vitamins in pharmaceutical preparations can be related to the specific formulation, technology of manufacturing, and storage. By analogy, technique and intensity of food processing and duration of food storage have influence on amounts of vitamins in food.

In contemporary time HPLC, connected with different detection techniques, is the leading analytical method for the quantification of vitamins as well as for most of other analytes, thanks to the possibility of rapid separation and quantification.

Present work summarizes basic and up-to-date information about vitamin quantification in different matrices. Attention is paid to the following WSV and FSV and their related compounds: AA, thiamine, riboflavin, nicotinamide, pantothenic acid, pyridoxine, folic acid, cyanocobalamin, retinol, ergocalciferol, cholecalciferol, tocopherol, and vitamin K.

2. THEORETICAL

Nowadays, there is a growing need for more rapid and specific methods for vitamin analysis. Individual vitamins can be chromatographed isocratically, as well as certain combinations of two or more vitamins; the simultaneous chromatography of more complicated mixtures may require a gradient elution. Determination can be carried out by normal-phase, ionexchange or ion-pairing chromatography, RP chromatography being the most common method. A use of some newly developed RP stationary phases allows separation of polar vitamins without the necessity of ion-pair reagent addition. For example, a use of a stationary phase for basic compounds involving a ligand with amide groups (RP-AmideC₁₆) provides good separation for simultaneous determination of the B-group vitamins [1, 2]. Several detection techniques can be applied, however, UV detection is the most common.

Sample preparation and pre-run sample stabilization are the most important steps to ensure that subsequent HPLC analysis is effective. Sample preparation has to be carefully optimized especially for vitamins subject to degradation due to light, oxidizing reagents, pH, heat, and others. Especially for vitamins executing function of antioxidants, which makes them unstable by their nature, it is necessary to use suitable methods to acquire accurate results.

Considering sample matrix and evaluated vitamins, appropriate type of extraction (direct extraction, LLE, SPE, SFE, *etc.*) should be chosen. It is important to optimize such parameters as solvent used, sample/solvent ratio, particle size of sample (pulverization of sample), time of extraction, and temperature for sample preparation and if necessary to assure protection from light and O_2 .

For simpler matrices direct extraction is mostly used. LLE is still frequently used today for FSV in complex matrices despite drawbacks, which include the use of toxic solvents, time-consuming procedures, problematical automation, multiple transfers, and need for solvent removal. In some cases repeating the extraction two or three times is adequate to achieve quantitative recovery. An alternative is SPE, which was proved to be an effective tool for simultaneous extraction, clean-up and concentration of WSV and FSV. This technique has gained much popularity in the last years.

Methods currently available for the determining physiological concentrations of vitamins in biological samples by HPLC require several preliminary steps of clean-up and, sometimes, of preconcentration because they do not possess sufficient sensitivity [3].

3. FORMS OF VITAMINS

Vitamins are usually present as chemical individuals in pharmaceutical preparations, but in food products individual vitamins occur in several forms and are present in significantly smaller amounts. The most incident forms of vitamins of interest are discussed in the text below.

Vitamin C occurs in the form of AA and DHAA. The *D*-isomer of AA, *i.e.* IAA, is not found in natural products but may be present in the so-called vitamin C-enriched products, where it is added as an antioxidant [4].

The most closely to thiamine related compounds are its mono- and pyrophosphate esters. However, nonphosphorylated structural analogues of vitamin B_1 activity, antagonists, metabolites, and compounds of similar organic structure (oxythiamine, 4-methyl-5-(2-hydroxyethyl)thiazole, S-benzoylthiamine, etc.) are also of primary importance for biochemical purposes [1].

The concentration of vitamin B_2 is usually determined as total riboflavin by converting FMN and FAD to riboflavin prior to quantification. Riboflavin occurs also as the glycoside or bound to amino acids histidine, cysteine, and tyrosine [5]. Besides already mentioned forms, there are also less known flavin derivatives present in nature. These are *e.g.* 10-hydroxyethylflavin, 10-formylmethylflavin, 7α hydroxyriboflavin, 8α -hydroxyriboflavin, 8α -hydroxy-FMN and some forms of isomeric alloxazinic structure such as lumichrome, 7- and 8-carboxylumichromes [6].

Niacin is found in foods as nicotinic acid, nicotinamide, NAD and its reduced form NADH, NADP and its reduced form NADPH [5]. The amide form of nicotinic acid, which is normally used for enrichment, has the same biological activity as nicotinic acid [7].

In contrast to most of foods and tissues where pantothenate is generally present in bound coenzyme form (coenzyme A) or acyl carrier protein, free pantothenic acid dominates in human and bovine milk [8, 9]. Infant formulas and a lot of foodstuffs are supplemented by addition of free pantothenate, as calcium pantothenate, which is less hygroscopic than the acidic form.

Pyridoxine, pyridoxal, pyridoxamine, their corresponding 5'-phosphate esters and 4-pyridoxic acid are active forms of vitamin B_6 [10].

Folates are group of pteroic acid polyglutamate compounds with similar biological activity as folic acid. Folic acid is a synthetic pteroic acid monoglutamate, not naturally occurring [11, 12].

Naturally occurring vitamin B_{12} originates solely from synthesis by bacteria and other microorganisms growing in soil or water, in sewage, and in the rumen and intestinal tract of animals [13]. Vitamin B_{12} includes not only cyanocobalamin, but also other cobalamins: hydroxocobalamin, methylcobalamin, and 5'deoxyadenosylcobalamin [14]. Because of its stability, cyanocobalamin is the form that is typically used in vitamin supplements [14].

Vitamin A activity in food is related to the presence of both retinol and a large number of provitamin carotenoids. In milk and in meat, vitamin A occurs mainly as fatty acid retinyl esters [15]. Foods such as milk or infant formula are most commonly fortified with vitamin A in the form of retinyl acetate or retinyl palmitate, because these molecules are more stable and less susceptible to oxidation [16]. Some other retinoids (retinal, retinoic acid, *etc.*) can be formed from retinol in the body by action of enzymes [17].

Vitamin D can occur as D_3 , derived from the action of sunlight on the 7-dehydrocholesterol, or D_2 , derived from the action of sunlight on the ergosterol [5]. Vitamin D is metabolized to 25-hydroxyvitamin D in the liver and subsequently to 1,25-dihydroxyvitamin D or 24,25-dihydroxyvitamin D in the kidney. 1,25-Dihydroxyvitamin D is known to be an active form of vitamin D. Although 24,25-dihydroxyvitamin D was considered as an inactive form of vitamin D, several recent reports have demonstrated its physiological activity [18, 19]. Eggs, their yolks in particular, are considered to be one of the most important sources of vitamin D in the diet. Apart from cholecalciferol, yolks also contain the biologically more active 25-hydroxycholecalciferol [20].

Natural vitamin E is of eight chemical compounds: α -, β -, γ -, and δ -tocopherols and four corresponding tocotrienols. These different forms have different biological activities [21]. The biological activities of α -, β -, γ -, and δ -tocopherols and α -tocotrienol have a ratio of 10 : 4 : 1 : 0.1 : 3 [22]. The major form of vitamin E in milk is α -tocopherol [15].

In nature, there are two types of vitamin K: K_1 (phylloquinone) and K_2 (menaquinones). Vitamin K_1 is a single compound, but vitamin K_2 is comprised by a series of vitaminers with multiisoprene units at the position 3 of the naphthoquinone: MK1 to MK14 [23]. Menadione is a fat-soluble vitamin (K₃) that is present in synthetic feeds.

4. SAMPLE PREPARATION, STABILITY OF VITAMINS

As can be found in Tables 1 and 2, sample preparation is mostly simpler and less laborious when WSV are quantified – often it is direct extraction with buffers, diluted acids, diluted alkali or their mixtures with organic solvents. For more complicated matrices (presence of fats or proteins), sample preparation can be performed using various procedures, such as direct extraction, enzymatic hydrolysis or saponification followed by extraction with organic solvents. If necessary, precipitation of proteins is performed by lowering their solubility in aqueous medium by addition of a water-miscible organic solvent (acetonitrile, acetone, methanol, *etc.*) or by lowering pH of the solution (by TCA, *etc.*) [24, 25]. Direct injection (after dilution, centrifugation or filtration) is used for evaluation of WSV in juices and other beverages [26—28].

A somewhat different approach in quantification of FSV can be observed. Traditionally, fat-soluble vitamin analysis in complex matrices is performed by alkaline saponification of the entire sample, or of an isolated lipid fraction, followed by liquid extraction with organic solvents [16]. Saponification has often been used to remove the bulk of fat (triacylglycerides) and facilitate extraction by releasing carotenoids, retinoids, tocopherols, and vitamin D compounds from the sample matrix [15, 29]. Saponification is carried out by treatment of the sample in a strong alkali environment; this decreases the load of material that is extracted together with vitamins into organic phase. Saponification procedures are performed after addition of NaOH or KOH solution, at ambient or elevated temperature, in the presence of antioxidants and under inert atmosphere. Saponification is always followed by extraction with an organic solvent, such as Et_2O , diisopropyl ether, chloroform, hexane or their mixtures [22]. Saponification has inherent disadvantages including emulsion formation, analyte degradation (especially vitamin E and retinoids) and relatively complex sample manipulation, which represent a source of possible errors [30]. To avoid analyte decomposition, some studies perform direct analysis after only diluting the oil in a suitable organic solvent with subsequent chromatographic analysis [31].

Direct extraction of the liposoluble fraction is achieved by extraction with an organic solvent such as hexane, or hexane—IPOH for normal-phase systems, and with anhydrous EtOH, ACN-MeOH-IPOH mixtures, IPOH or THF for reversed-phase systems [22]. Direct extraction of analyte can be also performed using supercritical fluid extraction, as it is presented in paper [30]. Sometimes a use of SPE is suitable or necessary, because the analytes presented in trace amounts (vitamins K, D, etc.) must be concentrated to permit detection and interfering components in these samples must be removed. Forehanded and often used is enzyme treatment (lipase, takadiastase, etc.), which releases FSV, normally bound on different molecules. Stability of individual vitamins and extraction procedures are mentioned in the text below.

- The extraction process for the measurement of vitamin C must extract both AA and DHAA and prevent the oxidation of AA. Traditionally, metaphosphoric acid was proven to be a useful dissolving agent for the determination of ascorbic acid and for the preanalysis stabilization [32]. Other solvents that can be

Source	Sample matrix	Column used	Mobile phase, Elution	Other chromatographic conditions	Separated compounds
[64]	Multivitamin preparation	Nova-Pack C18, 4 $\mu {\rm m},150$ \times 3.9 mm	$\begin{array}{l} {\rm A}=0.05 \ {\rm M-CH_3COONH_4} \\ {\rm B}={\rm MeOH} \\ {\rm Gradient \ program:} \\ {\rm 0 \ min: \ 92.5 \ \% \ A, \ 7.5 \ \% \ B} \\ {\rm 1.5 \ min: \ 92.5 \ \% \ A, \ 7.5 \ \% \ B} \\ {\rm 1.6 \ min: \ 84 \ \% \ A, \ 16 \ \% \ B} \\ {\rm 15 \ min: \ 70 \ \% \ A, \ 30 \ \% \ B} \end{array}$	FR: $1 \text{ cm}^3 \text{ min}^{-1}$; IV: 40 mm^3 ; UVD: λ/nm : 270, 362; CT: ambient	Pyridoxine: 2.5 min; Thiamine: 2.9 min; Nicotinamide: 3.2 min; Riboflavin phosphate: 10 min; Cyanocobalamin: 13 min
Extraction: LoD:	\rightarrow elution of V second step we Pyridoxine 1.3	WSV from the C18 car ere eluted FSV (see sec 7 mg dm ^{-3} , thiamine:	$3.18 \text{ mg} \text{dm}^{-3}$, nicotinamide:	mixture of MeOH—wat	ter ($\varphi_{\rm r} = 6:4$). In the
	dm^{-3} , cyanoco	balamin: 0.04 mg dm	-3.		
[58]	Multivitamin preparation	Nucleosil 100-5 C18, 5 μ m, 250 × 4.6 mm	$\begin{array}{l} \mathrm{A}=0.1~\mathrm{M}\text{-}(\mathrm{NH}_4)_2\mathrm{CO}_3\\ \mathrm{B}=\mathrm{Water}\\ \mathrm{C}=\mathrm{MeOH}\\ \mathrm{Isocratically:}~5~\%~\mathrm{A},~15~\%~\mathrm{B},\\ 80~\%~\mathrm{C} \end{array}$	FR: $1.5 \text{ cm}^3 \text{ min}^{-1}$; IV: 10 mm^3 ; UVD: λ/nm : 254; CT: ambient	Chlorpheniramine maleate (IS): 1.3 min; Pyridoxine: 1.8 min; Thiamine: 4.7 min
Extraction:	With MeOH.				
[40]	Multivitamin preparation	Phenyl propanol- amine bonded silica, 5 $\mu {\rm m},150$ \times 4.6 mm		FR: 1.0 cm ³ min ⁻¹ ; IV: 20 mm ³ ; UVD: λ /nm: 361; CT: not stated	Cyanocobalamin: 3.5 min
Extraction: LoQ:	With 50 % MeC Cyanocobalami				
[59]	Multivitamin preparation	LiChrospher 60 RP-select B, 250 × 4.6 mm	A = phosphate buffer (10.9 mM-KH ₂ PO ₄ —5 mM- hexanesulfonate—36 mM- TEA in water adjusted to pH 2.8 with H ₃ PO ₄) B = MeOH Isocratically: 80 % A, 20 % B	FR: 1.0 cm ³ min ⁻¹ ; Injection: 20 mm ³ ; UVD: λ /nm: 264, 280, 245; CT: 30 °C	Riboflavin 5'-phosphate: 5.7 min; Pyridoxine: 7.5 min; Riboflavin: 13.5 min; Thiamine: 19.4 min;
Extraction: LoD:	Folic acid: 25 ng	g cm $^{-3}$, nicotinamide:	-acetic acid ($\varphi_r = 94:5:1$). Fo 50 ng cm ⁻³ , nicotinic acid: 50 50 ng cm ⁻³ , thiamine: 100 ng c	ng cm^{-3} , pyridoxine: 50	
[12]	Multivitamin / mineral preparation	Ultrasphere ODS, 5 μ m, 250 × 4.6 mm	A = 0.03 M-KH ₂ PO ₄ ad- justed to pH 2.2 with H ₃ PO ₄ B = MeOH Isocratically: 78 % A, 22 % B (12 min) Then elution of retained compounds with increasing	FR: $1.0 \text{ cm}^3 \text{ min}^{-1}$; IV: 100 mm^3 ; UVD: λ/nm : 280; CT: 22 °C	Folic acid: 11.5 min
Extraction:	sulfanyle than ol		amount of MeOH in MP. sodium acetate— 5 % AA buffer asted to pH 6.0 with NaOH) ir		
LoQ:	Folic acid: 0.05				
[13]	Multivitamin tablets, fermentation media	μ Bondapak C18, 10 μ m, 300 \times 3.9 mm	$\begin{array}{l} \mathbf{A} = \mathbf{W} \mathbf{a} \mathbf{t} \mathbf{r} \\ \mathbf{B} = \mathbf{M} \mathbf{e} \mathbf{O} \mathbf{H} \\ \mathbf{I} \mathbf{s} \mathbf{o} \mathbf{c} \mathbf{r} \mathbf{a} \mathbf{t} \mathbf{c} \mathbf{a} \mathbf{l} \mathbf{y} \mathbf{:} \ 70 \ \% \ \mathbf{A}, \ 30 \ \% \ \mathbf{B} \end{array}$	FR: 0.8 cm ³ min ⁻¹ ; IV: 20 mm ³ ; FLD: λ /nm: 305/275 (EmW/ExcW); CT: embient	Cyanocobalamin: 3.5 min
Extraction: LoD:		I_2PO_4 buffer adjusted n: 0.1 ng cm ⁻³ .	with KOH to pH 7.0.	CT: ambient	

 ${\bf Table \ 1. \ Summary \ of \ Selected \ Methods \ Developed \ for \ Quantification \ of \ WSV}$

Table 1 (Continued)

Source	Sample matrix	Column used	Mobile phase, Elution	Other chromatographic conditions	Separated compounds
[35]	Athlete food, nutritional supplements, juices	Inertsil ODS, $3.5 \ \mu m$, $150 \ \times \ 4.6 \ mm$	A = 0.02 M-monosodium L- glutamate adjusted with phos- phoric acid to pH 2.1 Isocratically: 100 % A	FR: 0.8 cm ³ min ⁻¹ ; IV: 5 mm ³ ; ECD: glassy carbon vs. Ag/AgCl electrode, applied potential 400 mV; CT: ambient	AA: 4.7 min
Extraction: LoD:	With MP. AA: 0.1 ng.				
[28]	Drinks and fruit juice concentrates	Bio-Rad Aminex HPX-87H, 9 μ m, 300 \times 7.8 mm	$\begin{array}{l} \mathrm{A} = 0.005 \ \mathrm{M}\text{-}\mathrm{H}_2\mathrm{SO}_4 \\ \mathrm{B} = \mathrm{ACN} \\ \mathrm{Isocratically:} 84 \ \% \ \mathrm{A}, \ 16 \ \% \ \mathrm{B} \end{array}$	FR: 0.5 cm ³ min ⁻¹ ; IV: 20 mm ³ ; UVD: λ /nm: 215, 254, 280, RID; CT: 25 °C	DHAA: 9.8 min; AA: 10.5 min; Also separated furanic compounds and sugars.
Extraction: LoD:	Without extract AA: 0.1 mg dm	tion. $^{-3}$ (254 nm), DHAA:	1 mg dm^{-3} (230 nm).		Ū.
[55]	Fruit juices, beverages	μ Bondapak C18, 300 × 3.1 mm	$\begin{array}{l} \mathrm{A} = \mathrm{Water} \\ \mathrm{B} = \mathrm{MeOH} \\ \mathrm{C} = \mathrm{Tetrabutylammonium} \\ \mathrm{phosphate} \\ \mathrm{Isocratically:} \ 96.5 \ \% \ \mathrm{A}, \ 2.5 \ \% \\ \mathrm{B, \ and} \ 1.0 \ \% \ \mathrm{C} \end{array}$	FR: 1.5 cm ³ min ⁻¹ ; IV: 5 mm ³ ; UVD: λ /nm: 254; CT: not stated	АА
Extraction	Mixed with 6 $\%$	metaphosphoric acid.			
[60]	Multivitamin	Supelcosil LC-8-DB, 5 µm,	 A = Sodium hexanesulfonate and triethanolamine in water at pH 2.8 B = MeOH Isocratically: 85 % A, 15 % B 	FR: 2 cm ³ min ⁻¹ ; IV: 10 mm ³ ; UVD: λ /nm: 280; CT: ambient	AA: 1.7 min; Nicotinamide: 3.1 min; Pyridoxine: 5.5 min; Phenol (IS): 10 min; Thiamine: 15 min; Riboflavin: 21 min
	preparation	$250 \times 4.6 \text{ mm}$	 A = Sodium hexanesulfonate and triethanolamine in water at pH 2.8 B = MeOH Gradient program: 0 min: 92 % A, 8 % B 10 min: 82.8 % A, 17.2 % B 		Nicotinamide: 4.1 min; PABA: 7.2 min; Pyridoxine: 10 min; Phenol (IS): 13 min; Thiamine: 24 min; Riboflavin: 27 min
Extraction: LoQ:			0.025 mg cm^{-3} , nicotinamide: 0.05	mg cm $^{-3}$, pyridoxine: 0	
[1]	Pharmaceuticals (tablets, capsules)	s Spherisorb ODS-2, 5 μ m, 150 × 4.0 mm and guard column	A = 1 % acetic acid and 0.1 % sodium pentanesul- fonate B = 1 % acetic acid and 0.1 % sodium pentanesul- fonate and 50 % ACN Gradient program: 0 min: 88 % of A and 12 % of B 7 min: 88 % of A and 12 % of B 8 min: 40 % of A and 60 % of B 13 min: 40 % of A and 60 % of B 14 min: 88 % of A and 12 % of B Equilibration for 15 min	FR: 1.0 cm ³ min ⁻¹ ; IV: 50 mm ³ ; UVD: λ /nm: 230, 250, 264; CT: ambient	Thiamine monophosphate: 5.4 min; 4-methyl-5-(2- hydroxyethyl)thiazole 11.4 min; S-benzoylthiamine: 12.1 min; Thiamine: 14.2 min

Table 1 (Continued)

Source	Sample matrix	Column used	Mobile phase, Elution	Other chromatographic conditions	Separated compounds
[1]	Pharmaceuticals (tablets, capsules) With water.	s RP-AmideC16, 5 μm, 150 × 4.0 mm and guard column	$\begin{array}{l} \mathrm{A}=25~\mathrm{mM}\textrm{-}\mathrm{KH_2PO_4}~\mathrm{at}\\ \mathrm{pH}~7\\ \mathrm{B}=\mathrm{ACN}\\ \mathrm{Gradient~program:}\\ 0~\mathrm{min:}~100~\%~\mathrm{A}\\ 10~\mathrm{min:}~100~\%~\mathrm{A}\\ \mathrm{and}~10~\%\\ \mathrm{of}~\mathrm{B}\\ 20~\mathrm{min:}~100~\%~\mathrm{A}\\ \mathrm{and}~10~\%\\ \mathrm{B}\\ 21~\mathrm{min:}~100~\%~\mathrm{A}\\ \mathrm{Equilibration~for}~15~\mathrm{min} \end{array}$	FR: $1.0 \text{ cm}^3 \text{ min}^{-1}$; IV: 50 mm^3 ; UVD: λ/nm : 230, 250, 264; CT: ambient	Thiamine pyrophosphate: 5.2 min; Thiamine monophosphate: 5.7 min; Oxythiamine: 6.1 min; Thiamine: 6.9 min; 4-methyl-5-(2- hydroxyethyl)thiazol- 11 min; Amprolium: 12 min; S-benzoylthiamine: 17 min
LoQ:	Thiamine pyrop	$\mu g \text{ cm}^{-1}$, 4-methyl-	n^{-1} , thiamine monophospha 5-(2-hydroxyethyl)thiazole: (te: 0.2 μ g cm ⁻¹ , oxythiam 0.08 μ g cm ⁻¹ , amprolium:	ine: 0.02 $\mu g \text{ cm}^{-1}$, 0.2 $\mu g \text{ cm}^{-1}$, S-
[25]	Infant milk	Tracer Spherisorb ODS2 C18, 5 μ m, 250 × 4.6 mm	A = Acetic buffer (5 mM- octanesulfonic acid—0.5 % TEA—2.4 % glacial acetic acid and 15 % MeOH ad- justed to pH 3.6 \pm 0.1) Isocratically: 100 % A	FR: $1.0 \text{ cm}^3 \text{ min}^{-1}$; IV: 20 mm^3 ; UVD: λ/nm : 261, 287, 290, 282, 268, 361, 246; CT: ambient	Nicotinamide: 5 min; Pyridoxal: 7 min; Pyridoxine: 10 min; Pyridoxamine: 12 min; Folic acid: 14 min; Riboflavin: 17 min; Cyanocobalamin: 23 min;
Extraction: LoQ:	separated and re $<$ 0.05 mg cm $^{-3}$	esidue extracted again	precipitation of proteins) \rightarrow \rightarrow centrifugation \rightarrow superna ridoxal, pyridoxine, pyridoxa syanocobalamin.	tants were combined and di	luted.
[32]	Juices, milks, nutrients	Inertsil ODS-3, 5 μ m, 150 × 4.6 mm	$A = 100 \text{ mM-KH}_2\text{PO}_4 \text{ con-}$ taining 1 mM-EDTA.2Na adjusted with phosphoric acid to pH 3 Isocratically: 100 % A	FR: $0.6 \text{ cm}^3 \text{ min}^{-1}$; IV: 20 mm^3 ; ECD: applied potential at 400 mV vs. an Ag/AgCl electrode; CT: ambient	AA: 5.5 min
Extraction: LoD:	With MP. AA: 0.5 ng.			C1. ambient	
[4]	Food, plasma, multivitamin tablets	Phenomenex Jupiter C18, 5 μ m, 250 × 4.6 mm	A = 2.3 mM-dodecyl- trimethylammonium chloride and 2.5 mM- EDTA.2Na in 66 mM- phosphate—20 mM-acetate buffer adjusted to pH 4.5 Isocratically: 100 % A	FR: 1.2 cm ³ min ⁻¹ ; IV: 20 mm ³ ; UVD: λ /nm: 247; FLD: λ /nm: 430/350 (EmW/ExcW); CT: 20 °C; Post-column derivatization with 28 mM- <i>O</i> -phenyldiamine in 12 mM-trisodium citrate—55 mM-EDTA.2N buffer adjusted to pH 3.7; Reagent delivery: 0.3 cm ³ Reaction temperature: 55 °	$\min^{-1};$
Extraction:	gation. Plasma: 10 % n acetate buffer of			c acid adjusted to pH 2 und	er $\mathrm{CO}_2 \rightarrow \mathrm{centrifu}$

Multivitamin tablets: as food, without CO_2 .

Table 1 (Continued)

Sample matrix	Column used	Mobile phase, Elution	Other chromatographic conditions	Separated compounds
Parenteral nutrition mixtures	Luna C18, 5 μ m, 150 × 4 mm	A = MeOH $B = 0.067 M-Na_2HPO_4$ buffer with 0.05 M- alkyltrimethylammonium bro- mide of pH 7.8 Isocratically: 40 % A 60 % B	Flow rate: 0.7 cm^3 min ⁻¹ ; Injection: not stated; UVD: λ/nm : 278; CT: not stated	AA: 4.1 min
from the differen	nce of total AA and A	conversion with dithiothreitol to		HAA was determined
Pork meat products			FR: 1.0 cm ³ min ⁻¹ ; IV: 20 mm ³ ; FLD: λ /nm: 395/290 (EmW/ExcW); CT: 30 °C	Pyridoxamine: 2.6 min; Pyridoxal: 5.4 min; Pyridoxine: 6.9 min; 4-deoxypyridoxine (IS): 11.2 min
\rightarrow adjustment of	of pH with 2 M-sodium	acetate to the value $4.0-4.5$ –	• addition of takadiastas	for 30 min \rightarrow cooling e \rightarrow incubation for 3
Milk and infant formulas	Luna C8, 5 μ m, 250 × 4.6 mm hydrophobic shielded endcapped	$\begin{split} \mathbf{A} &= 0.1 \ \mathrm{M}\text{-}\mathrm{KH}_2\mathrm{PO}_4 \ \mathrm{adjusted} \\ \mathrm{to} \ \mathrm{pH} \ 2.25 \ \mathrm{with} \ \mathrm{H}_3\mathrm{PO}_4 \\ \mathrm{B} &= \mathrm{ACN} \\ \mathrm{Isocratically:} \ 97 \ \% \ \mathrm{A}, \ 3 \ \% \ \mathrm{B} \end{split}$	FR: $1.4 \text{ cm}^3 \text{ min}^{-1}$ (at 18 min increased to $1.8 \text{ cm}^3 \text{ min}^{-1}$); IV: 10 mm ³ ; UVD: λ/nm : 200, 205, 204:	Pantothenic acid: 14 min
for 20 min \rightarrow di	ilution of sample \rightarrow ce		CT: not stated	\rightarrow mixing \rightarrow standing
Wine, beer, and fruit juices	Hypersil C18, 5 $\mu \rm{m},$ 200 \times 2.1 mm	$\begin{array}{l} A = 0.05 \ M-NaH_2PO_4 \ ad-\\ justed \ with \ H_3PO_4 \ to \ pH \ 3.0 \\ B = ACN \\ Gradient \ program: \\ 0 \ min: \ 95 \ \% \ A, \ 5 \ \% \ B \\ 8 \ min: \ 75 \ \% \ A, \ 5 \ \% \ B \\ 12 \ min: \ 95 \ \% \ A, \ 5 \ \% \ B \\ Equilibration \ for \ 3 \ min \end{array}$	FR: 0.6 cm ³ min ⁻¹ ; IV: 20 mm ³ ; FLD: λ /nm: 525/265 (EmW/ExcW); 500 nm cut-off filter was used; CT: not stated	FAD: 5.8 min; FNM: 6.2 min; Riboflavin: 7.3 min
Without extract	tion.			
Yeast cell-free culture media, baker's yeast extract, egg, milk	· ,		FR: 1.0 cm ³ min ⁻¹ ; IV: 20 mm ³ ; FLD: λ /nm: 389/290 (EmW/ExcW); Post-column derivatization with sodium bisulfite (1 g dm ⁻³); Reagent delivery: 0.1 cm ³ min ⁻¹ ; CT: ambient	Pyridoxamine 5'-phosphate ester: 3.5 min; Pyridoxamine: 4.0 min Pyridoxal 5'-phosphate ester: 6.0 min; Pyridoxine 5'-phosphate ester: 6.5 min; Pyridoxal: 9.5 min; Isopyridoxal (IS): 11
	Parenteral nutrition mixtures AA was analyze from the differe DHAA: 1 μ g cm Pork meat products Addition of 0.1 \rightarrow adjustment of h at 45 °C \rightarrow ad Milk and infant formulas for 20 min \rightarrow di 0.3 mg/100 g of Wine, beer, and fruit juices Without extract Yeast cell-free culture media, baker's yeast extract, egg,	Parenteral nutritionLuna C18, 5 μ m, nutritionNatures150 × 4 mmAA was analyzed directly, DHAA after from the difference of total AA and A DHAA: 1 μ g cm ⁻³ .Pork meatSpherisorb ODS C18, productsproducts5 μ m, 250 × 4.0 mmAddition of 0.1 M-HCl and IS into the \rightarrow adjustment of pH with 2 M-sodium h at 45 °C \rightarrow addition of TCA \rightarrow heatMilk andLuna C8, 5 μ m, infant formulas250 × 4.6 mm hydrophobic shielded endcappedDilution of the sample with water \rightarrow m for 20 min \rightarrow dilution of sample \rightarrow ce 0.3 mg/100 g of anhydrous sample.Wine, beer,Hypersil C18, 5 μ m, and fruit juicesWithout extraction.Yeast cell-free baker's yeast extract, egg,Phenosphere ODS2, and guard column extract, egg,	$\begin{array}{c cccc} Parenteral & Luna C18, 5 \ \mu m, & A = MeOH \\ nutrition & 150 \times 4 \ mm & B = 0.067 \ M-Na_2 HPO_4 \\ buffer with 0.05 \ M-alkyltrimethylammonium bromide of pH 7.8 \\ Isocratically: 40 % A, 60 % B \\ AA was analyzed directly, DHAA after conversion with dithiothreitol to from the difference of total AA and AA in original sample. Sample means DHAA: 1 \ \mu g \ cm^{-3}. \\ \hline Pork meat & Spherisorb ODS C18, A = 0.01 \ M-H_2SO_4 \\ products & 5 \ \mu m, 250 \times 4.0 \ mm \ Isocratically: 100 % A \\ \hline Addition of 0.1 \ M-HCl and IS into the sample \rightarrow shaking \rightarrow heating i \rightarrow adjustment of pH with 2 M-sodium acetate to the value 4.0-4.5-6 h at 45^{\circ}\text{C} \rightarrow addition of TCA \rightarrow heating for 5 min at 95-100^{\circ}\text{C} \rightarrow c \rightarrow c \rightarrow Milk and Luna C8, 5 \ \mu m, A = 0.1 \ M-KH_2PO_4$ adjusted infant formulas $250 \times 4.6 \ mm$ to pH 2.25 with H ₃ PO_4 hydrophobic shielded B = ACN endcapped Isocratically: 97 % A, 3 % B \\ \hline Dilution of the sample with water \rightarrow mixing \rightarrow standing for 20 \ min \rightarrow for 20 \ min \rightarrow dilution of sample \rightarrow centrifugation \rightarrow filtration. $0.3 \ mg/100 \ g \ of anhydrous sample. \\ \hline Wine, beer, Hypersil C18, 5 \ \mu m, A = 0.05 \ M-NaH_2PO_4 \ adjusted inf \ program: 0 \ min: 95 \ \% A, 5 \ \% B \ 8 \ min: 75 \ \% A, 25 \ \% B \ 12 \ min: 95 \ \% A, 5 \ \% B \ 8 \ min: 75 \ \% A, 5 \ \% B \ 8 \ min: 75 \ \% A, 5 \ \% B \ 8 \ min: 75 \ \% A, 5 \ \% B \ 8 \ min: 75 \ \% A, 5 \ \% B \ 8 \ min: 75 \ \% A, 5 \ \% B \ 12 \ min: 95 \ \% A, 5 \ \% B \ 8 \ min: 75 \ \% A, 5 \ \% B \ 8 \ min: 75 \ \% A, 5 \ \% B \ 8 \ min: 75 \ \% A, 5 \ \% B \ 8 \ min: 75 \ \% A, 5 \ \% B \ 8 \ min: 75 \ \% A, 5 \ \% B \ 8 \ min: 75 \ \% A, 5 \ \% B \ 8 \ min: 75 \ \% A, 5 \ \% B \ 8 \ min: 75 \ \% A, 5 \ \% B \ 8 \ min: 75 \ \% A, 5 \ \% B \ 8 \ min: 75 \ \% A, 5 \ \% B \ 8 \ min: 75 \ \% A, 5 \ \% B \ 8 \ min: 75 \ \% A, 5 \ \% B \ 8 \ min: 75 \ \% A, 5 \ \% B \ 8 \ min: 75 \ \% A, 5 \ \% B \ 8 \ min: 75 \ \% A, 5 \ \% B \ 8 \ min: 75 \ \% A, 5 \ \% B \ 8 \ min: 75 \ \% A, 5 \ \% B \ 8 \ min: 75 \ \% A, 5 \ \% B \ 9 \ 9 \ 9 \ 9 \ 9 \ 9 \ 9 \ 9 \ 9 \$	$\begin{array}{c} \mbox{hromatographic}\\ \mbox{conditions}\\ \end{tabular} eq:approx_approx$

Egg yolk extract and milk extract: The same procedure, but after the 1st centrifugation was used solution from the clear middle part (to avoid protein at the bottom and fat on the top).

Table 1 (Continued)

Source	Sample matrix	Column used	Mobile phase, Elution	Other chromatographic conditions	Separated compounds
[2]	Baby foods	Supelco RP-Amide C16, 5 µm and guard column	$\begin{array}{l} A = 10 \ mM\text{-}KH_2PO_4 \ at \ pH \ 6 \\ B = ACN \\ Gradient \ program: \\ 0 \ min: \ 100 \ \% \ A \\ 13 \ min: \ 100 \ \% \ A \\ 14 \ min: \ 94 \ \% \ A, \ 6 \ \% \ B \\ 20 \ min: \ 94 \ \% \ A, \ 6 \ \% \ B \\ 21 \ min: \ 88 \ \% \ A, \ 12 \ \% \ B \\ 31 \ min: \ 88 \ \% \ A, \ 12 \ \% \ B \\ 51 \ min: \ 88 \ \% \ A, \ 12 \ \% \ B \\ Equilibration \ for \ 15 \ min \end{array}$	FR: $1 \text{ cm}^3 \text{ min}^{-1}$; IV: 100 mm^3 ; UVD: λ/nm : 249, 266, 326, 361; CT: not stated	Nicotinic acid: 3.2 min; Pyridoxal: 4.3 min; Pyridoxine: 5.2 min; Thiamine: 6.7 min; Nicotinamide: 7.3 min; Inosine: 13.1 min; Folic acid: 19.2 min; Cyanocobalamin: 26.7 min; Riboflavin: 28.4 min
Extraction: LoQ:	value 4 with 1 heating for 10 n Nicotinic acid:	M-sodium acetate \rightarrow a nin at 90 °C \rightarrow cooling 0.064 μ g cm ⁻³ , pyrido	$-\text{HCl} \rightarrow \text{heating for 30 min at 9}$ addition of takadiastase $\rightarrow \text{stirr}$ $\rightarrow \text{dilution with mobile phase -}$ xal: 0.063 $\mu \text{g cm}^{-3}$, pyridoxine	ing for 2 h at 50 °C \rightarrow \rightarrow centrifugation \rightarrow filtra: : 0.068 μ g cm ⁻³ , thiam	stment of pH to the addition of TCA \rightarrow tion. ine: 0.032 µg cm ⁻³ ,
	riboflavin: 0.010		$0.029 \ \mu g \ cm^{-3}$, folic acid: 0.015	μ g cm ⁻⁰ , cyanocobala	min: $0.032 \ \mu g \ cm^{-9}$,
[65] Extraction:		5 μ m, 250 × 4.6 mm of sample \rightarrow filtration \cdot	A = 5 mM-tetrabutylammonium hydrogen sulfate—25 mM- NaCl in water B = 5 mM-tetrabutylammonium hydrogen sulfate—25 mM- NaCl—1 mM-KH ₂ PO ₄ —65 % ACN in water Gradient program: 0 min: 90 % A, 10 % B 10 min: 90 % A, 10 % B 15 min: 64 % A, 36 % B 35 min: 50 % A, 50 % B 38 min: 50 % A, 50 % B Equilibration for 5 min → SAX cartridge was conditioned	IV: 20 mm ³ ; UVD: λ/nm: 284; m CT: 25 °C	
LoQ:	\rightarrow application c acetate containi Folic acid: 0.06	ng 10 % NaCl.	$e \rightarrow rinsing of cartridge with wa$	ater \rightarrow drying \rightarrow elution	i with 0.1 M-sodium
[01]	Fortified cereal	Microsorb-MV C18	$A = 0.0035 \text{ M-KH}_2\text{PO}_4$	FR: $1 \text{ cm}^3 \text{ min}^{-1}$;	Folio opid. 12 min
[61]	products	3 $\mu\mathrm{m},100\times4.6$ mm	and 0.0032 M-K ₂ HPO ₄ , pH 6.8, containing 0.005 M- tetrabutylammonium dihy- drogenphosphate B = MeOH Isocratically: 75 % A, 25 % B	IV: 20 mm ³ ; UVD: λ /nm: 280; CT: ambient	Folic acid: 13 min
	Homogenized sa pH to the value by raising of ter SAX cartridges	$3 \ \mu m$, $100 \times 4.6 \ mm$ with guard column mple was stirred for 1 1 6.9 with phosphoric ac mperature to $90 \ C \rightarrow$ (cartridge was condition	6.8, containing 0.005 M- tetrabutylammonium dihy- drogenphosphate	IV: 20 mm ³ ; UVD: λ /nm: 280; CT: ambient containing 0.05 % ascorb neubation 1h at 65 °C \rightarrow ration and if needed SP 0.1 M-K ₂ HPO ₄ (pH 8–9	ate → adjustment of enzyme inactivation E was performed on 9) containing 0.05 %
	Homogenized sa pH to the value by raising of ter SAX cartridges $AA \rightarrow applicati$ AA).	$3 \ \mu m$, $100 \times 4.6 \ mm$ with guard column mple was stirred for 1 1 6.9 with phosphoric ac mperature to $90 \ C \rightarrow$ (cartridge was condition	6.8, containing 0.005 M- tetrabutylammonium dihy- drogenphosphate B = MeOH Isocratically: 75 % A, 25 % B h in 0.1 M-K ₂ HPO ₄ (pH 8—9) c id \rightarrow addition of α -amylase \rightarrow in cooling \rightarrow centrifugation \rightarrow filt oned with hexane, MeOH, and C with 0.02 M-buffer \rightarrow elution of	IV: 20 mm ³ ; UVD: λ /nm: 280; CT: ambient containing 0.05 % ascorb neubation 1h at 65 °C \rightarrow ration and if needed SP 0.1 M-K ₂ HPO ₄ (pH 8–9	ate → adjustment of enzyme inactivation E was performed on 9) containing 0.05 %

Source	Sample matrix	Column used	Mobile phase, Elution	Other chromatographic conditions	Separated compounds
[6] Extraction: LoD:	\rightarrow shaking for 60 column (10 μ m, as mobile phase,	$s \rightarrow centrifugation at$	A = MeOH B = 0.05 M-ammonium ac- etate buffer at pH 6.0 Gradient program: 0 min: 30 % A, 70 % B 1 min: 30 % A, 70 % B 10 min: 70 % A, 30 % B eOH—CH ₂ Cl ₂ ($\varphi_r = 9:10$), shall 4 °C → filtration. Semi-preparation rate 3 cm ³ min using MeOH and	ive HPLC of flavins fro	m food on μ Bondapack
[62]	Polymeric carrier	Phenomenex Luna C18, 5 μ m, 150 × 2.0 mm	A = MeOH B = 0.01 M-phosphate buffer, pH 5.0 containing 4 mM- tetrabutylammonium hydro- gensulfate	FR: 0.3 cm ³ min ⁻¹ ; Injection: 20 mm ³ ; UVD: λ /nm: 270; CT: not stated	Folic acid: 9.5 min; Benzoic acid (IS): 19 min
Extraction: LoD:	anion exchanger sample \rightarrow rinsir) were conditioned being of cartridge with on ning 0.2 M-potassium n chlorate.	Isocratically: 23 % A, 77 % B DH \rightarrow dilution with mobile phase fore use with MeOH and 0.01 M lemi water \rightarrow elution with mixt chlorate ($\varphi_{\rm r} = 50 : 50$) or with	M-phosphate buffer, pl ture of acetonitrile—0	H 9.0 \rightarrow application of .1 M-NaH ₂ PO ₄ buffer
[63]	Blood	μ Bondapak C18, 100 × 8 mm	A = 0.1 M-sodium citrate buffer adjusted to pH 4.0 with orthophosphoric acid B = 1 % acetic acid C = MeOH Isocratically: 43 % A, 42 % B, 15 % C	FR: $3.0 \text{ cm}^3 \text{ min}^{-1}$; IV: 200 mm^3 ; UVD vs. scintillation of collected eluate; IS: ³ H-folic acid; CT: not stated	Folic acid: 12 min
Extraction: LoQ:	perchloric acid – (conditioned wit	\rightarrow pH was adjusted to the MeOH and then with the vacuum \rightarrow residuut	ingation → addition of IS into see the value 7.0 with 6 M-KOH → s th citrate—phosphate buffer) → m was redissolved in 0.5 % sodiu	$rum \rightarrow serum$ was de ample solution was loa \cdot elution of retained fo	ded onto C18 cartridge
[56]	Plasma and serum	1 ,	A = 5 mM-cetyltrimethyl- ammonium bromide and 50 mM-KH ₂ PO ₄ at pH 4.5 Isocratically: 100 % A	FR: $1 \text{ cm}^3 \text{ min}^{-1}$; IV: 20 mm^3 ; UVD: λ/nm : 254 ; CT: ambient	AA: 8.9 min; 4-hydroxyacetanilide (IS): 14 min

Table 1 (Continued)

Source	Sample matrix	Column used	Mobile phase, Elution	Other chromatographic conditions	Separated compounds
[66]	Urine	$\mu \rm Bondapak$ C18, 5 $\mu \rm m,$ 250 \times 4.6 mm	$\begin{array}{l} A = 0.1 \ \text{M-TFA} \\ B = 0.1 \ \text{M-TFA} \ \text{and} \ \text{MeOH} \\ (\varphi_r = 10:90) \\ \text{Gradient program:} \\ 0 \ \text{min:} \ 99.5 \ \% \ \text{A} \ \text{and} \ 0.5 \ \% \ \text{B} \\ 5 \ \text{min.:} \ 99.5 \ \% \ \text{A} \ \text{and} \ 0.5 \ \% \ \text{B} \\ 12 \ \text{min:} \ 10 \ \% \ \text{A} \ \text{and} \ 90 \ \% \ \text{B} \\ 15 \ \text{min:} \ 10 \ \% \ \text{A} \ \text{and} \ 90 \ \% \ \text{B} \\ \text{Equilibration} \end{array}$	FR: 1 cm ³ min ⁻¹ ; IV: 100 mm ³ ; UVD: λ /nm: 254; CT: ambient	AA: 3.1 min; 5-methylcytosine (IS): 4.2 min; B ₆ : 5.0 min; B ₁ : 6.2 min; B ₂ : 13 min
Extraction:	from cartridge	Ũ	(conditioned with MeOH and a H 4.2; with 0.005 M-HCl) and t 3.7.	/ - (//
LoD:	B ₁ : 1.80 $\mu g \ cm^{-1}$	$^{-3}$, B ₂ : 0.22 μ g cm ⁻³ ,	AA: 0.42 $\mu g \text{ cm}^{-3}$, and B ₆ : 6.7	$7 \ \mu \mathrm{g} \ \mathrm{cm}^{-3}$.	
[54]	Plants	Asahipak GS-320 7E, 250 × 7.6 mm	A = 17 mM-acetic acid con- taining 0.5 mM-EDTA Isocratically: 100 % A	 FR: 1.0 cm³ min⁻¹; IV: not stated; Post-column derivatization with 0.02 M-benzamidine solution and 0.75 M-borate buffer containing 0.2 M-potassium sulfite, pH 10.5 (both 	DHAA: 11 min; AA: 13 min; Together separated AA-carbamylated derivatives.

LoD: All quantified substances: $< 0.5 \ \mu \text{mol.}$

used as stabilizing agents are 0.1 M-KH₂PO₄ at pH 3.0 with 0.001 M-EDTA.2Na or 0.01 M-phosphate buffer at pH 6.8 with 0.25 % cysteine and are discussed in the same paper. As another extraction solvent, authors [4] propose a combination of metaphosphoric acid and oxalic acid, pH 2. As declared, this buffer provides a high stabilization of AA and DHAA and leads to minimal interactions with the chromatographic system. In the presence of oxidizing reagents, AA is oxidized to DHAA. DHAA then hydrolyzes to 2.3-diketogulonic acid and this compound is degraded to threonic and oxalic acid [33, 34]. Influence of individual conditions during extraction (pH, light, temperature, etc.) on stability of AA is in detail discussed in [35]. AA is the least stable component in parenteral nutrition mixtures [33].

- The stability of thiamine depends on pH, temperature, ionic strength, and the presence of ions [1]. The compound is increasingly unstable as the pH rises and is decomposed by oxidizing or reducing agents [34]. Decomposition of the vitamin involves fragmentation into thiazole and pyrimidine derivatives [1]. Enzymatic treatment of sample matrix after acidic treatment appeared essential to achieve total extraction of thiamine and riboflavin from foods, while for the other vitamins of B-group the recovery after acidic hydrolysis was similar to recovery after acidic followed by enzymatic hydrolysis [2].

– Flavins are sensitive to light, alkaline or extremely acidic pH. Riboflavin decomposition in food is usually reported as a percentage of the initial amount present or as a determined lumichrome content, which is a photoproduct of riboflavin degradation in acid and neutral solutions. Riboflavin and its coenzymes under alkaline conditions are photodegraded to biologically inactive lumiflavin [6]. Riboflavin and FMN in neutral aqueous solutions are stable even when heated to $100 \,^{\circ}$ C [36]. In diluted acids, however, the ester bond of flavin nucleotides is rapidly hydrolyzed [6]. Degradation of flavin mononucleotide and flavin adenine dinucleotide in wines is linked to the photogeneration of thiols and is responsible for "sunlight flavour" [26, 27].

- Nicotinamide is normally very stable [7]. Upon acid treatment, the NADH and NADPH are converted to the 6-cyclo compounds. Under alkaline conditions the NAD and NADP are degraded to nicotinaldehyde. Thus, it is not possible to measure all of the nicotinic

Source	Sample matrix	Column used	Mobile phase, Elution	Other chromatographic conditions	Retention times
[64]	Multivitamin preparation	Nova-Pack C18, 4 $\mu {\rm m},150$ \times 3.9 mm	$\begin{array}{l} \mathbf{A} = \mathbf{MeOH} \\ \mathbf{B} = \mathbf{ACN} \\ \mathbf{Isocratically: 95 \% A, 5 \% B} \end{array}$	FR: $2 \text{ cm}^3 \text{ min}^{-1}$; IV: 20 mm^3 ; UVD: λ/nm : 285; CT: ambient	Cholecalciferol: 2.1 min; Tocopherol acetate: 2.7 min; Retinyl palmitate: 7.3 min
Extraction: LoD:	water), elution of fat-soluble vit	of WSV from the C18 of tamins from the cartrid	→ application onto C18 cartrid cartridge with water and with m dge with CHCl ₃ . nerol acetate: 3.09 mg dm ⁻³ , ret	ixture of MeOH—water	IeOH and then with $(\varphi_r = 6: 4)$. Elution
[43]	Retinoid solutions	Phenomenex Luna C18, 3 μ m, 150 × 4.6 mm	A = MeOH and 10 mM- ammonium acetate $(\varphi_r = 75 : 25)$ B = MeOH and THF $(\varphi_r = 84 : 16)$ Gradient program: 0 min: 100 % A, 0 % B 25 min: 100 % A, 0 % B 35 min: 0 % A, 100 % B 45 min: 0 % A, 100 % B	FR: 0.8 cm ³ min ⁻¹ ; IV: 20 mm ³ ; UVD: λ /nm: 350; FLD: λ /nm: 520/350, 520/450 (EmW/ExcW), CT: ambient	13-cis retinoic acid: 27.5 min; 9-cis retinoic acid: 29.5 min; All-trans retinoic acid: 31.5 min; Retinol palmitate: 47 min; β -carotene: 49 min
Extraction: LoD:		cid: 12 pmol (UVD), pmol (UVD), 5 pmol	50 min: 100 % A, 0 % B 7 pmol (FLD); 9- <i>cis</i> retinoic aci (FLD); retinyl palmitate: 15 pm		
	Pharmaceutical	Phenomenex Prodigy 50DS3, 5 μ m, 250 × 3.2 μ m	$\begin{array}{l} \mathbf{A} = \mathbf{ACN} \\ \mathbf{B} = \mathbf{EtOH} \\ \mathbf{C} = 1 \ \% \ \text{glacial acetic acid} \\ \text{Isocratically: 68 \% A, 8 \% B,} \\ 24 \ \% \ \mathbf{C} \end{array}$	FR: 0.4 cm ³ min ⁻¹ ; IV: 20 mm ³ ; FLD: λ /nm: 520/350 (EmW/ExcW); CT: 32 °C	 13-cis retinoic acid: 28 min; 9-cis retinoic acid: 31 min; All-trans retinoic acid: 33 min
[44]	[44] preparations (capsules, gel, cream, solution)	Phenomenex Luna Phenyl—Hexyl, 5 μ m, 250 × 4.6 mm	$\begin{array}{l} \mathbf{A} = \mathbf{ACN} \\ \mathbf{B} = \mathbf{MeOH} \\ \mathbf{C} = 1 \ \% \ \text{glacial acetic acid} \\ \text{Isocratically: 86 \% A, 10 \% B,} \\ 4 \ \% \ \mathbf{C} \end{array}$	FR: 0.8 cm ³ min ⁻¹ ; IV: 20 mm ³ ; FLD: λ /nm: 520/350, 330/296, 520/450 (EmW/ExcW); CT: 32 °C	All-trans retinoic acid: 4.6 min; Tocopherol acetate: 8 min; Retinyl palmitate: 12 min;
Extraction:	$(5 \text{ min}) \rightarrow \text{centr}$ Capsules – 2nd Gel: Sonicating	rifugation \rightarrow dilution. method: With EtOH b with MP (1 min) \rightarrow c	mixture of ACN—EtOH—1 % ϵ by sonicating (5 min) \rightarrow centrifu entrifugation \rightarrow dilution with M liluted with ACN and loaded on	gation \rightarrow dilution. P.	
LoD:	mixture of ACN Solution – 2nd n 9- <i>cis</i> retinoic a (EmW/ExcW))	$\begin{array}{l} \text{MeOH} \ (\varphi_{\rm r} = 1:1), \\ \text{method: Sample was d} \\ \text{cid: 11 pmol} \ (\text{FLD } \lambda) \end{array}$	iluted with mixture of ACN—Et ,/nm: 520/350 (EmW/ExcW)); 8 pmol (FLD λ /nm: 520/350 (1	$CH-CH_2Cl_2 \ (\varphi_r = 60)$ β -carotene: 5 pmol (H	: 30 : 10). FLD λ /nm: 520/450
[30]	Cosmetic creams and lotions	μ Bondapak C18, 10 μ m, 300 × 3.9 mm and	$\begin{aligned} \mathbf{A} &= \mathbf{MeOH} \\ \mathbf{B} &= \mathbf{ACN} \\ \mathbf{Isocratically: 75 \% A, 25 \% B} \end{aligned}$	FR: 1.5 cm ³ min ⁻¹ ; IV: not stated; UVD: λ /nm: 280, 325;	Tocopherol acetate: 6 min;

 ${\bf Table \ 2. \ Summary \ of \ Selected \ Methods \ Developed \ for \ Quantification \ of \ FSV}$

 ${\bf Table \ 2} \ ({\rm Continued})$

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	ource S	Sample matrix	Column used	Mobile phase, Elution	Other chromatographic conditions	Retention times
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(Optimization		B = 1,4-dioxane	IV: not stated; FLD: λ /nm: 326/294 (EmW/ExcW);	$\begin{array}{l} \alpha \text{-tocopherol: 6.5 min;} \\ \alpha \text{-tocotrienol: 7.6 min;} \\ \beta \text{-tocopherol: 9.2 min;} \\ \beta \text{-tocotrienol: 10.2 min;} \\ \gamma \text{-tocopherol: 11.7 min;} \\ \gamma \text{-tocotrienol: 12.7 min;} \\ \delta \text{-tocopherol: 15.2 min;} \\ \delta \text{-tocotrienol: 19 min} \end{array}$
[69] Powdered milk and local flour LiChrosorb RP18, bit m, 125 × 4.5 mm A = ACN FR: 0.8 cm ³ min ⁻¹ ; IV: 20 mm ³ ; UVD: λ/m:: 292; (b + γ-tocc) CT: ambient Retions Extraction: Heating of the sample with 50 % NaOH (w/v) for 3 min at 30 °C → addition of ethanol and hydroquinon in water bath for 30 min at 80 °C → cooling → addition of water → extraction with dimethyl ether ether (φ _r = 1 : 1) repeatedly → evaporation under vacuum at 40 °C → residue was redissolved in MeC [79] Emulsified mutritional Inertsil ODS-2, mutritional A = MeOH FR: 0.4 cm ³ min ⁻¹ ; Isocratically: 50 % A, 50 % FLD: λ/m:: 295/325 (EmW/ExcW); CT: 40 °C Extraction: Sample was dissolved in 5 % aqueous sodium sulfate solution containing 1 mM-EDTA-2Na → application onto conditioned cartridge (with MeOH and water) → rinsing with demi water, 5 %, 25 %, and 50 % AC with ACN → filtration. Cols C18, 5 µm, 250 × 4.6 mm and 250 × 4.6 mm and 250 × 4.6 mm and 250 × 4.6 mm and 250 × 4.6 mm andutation of BHT → filtration → exer and 250 × 4.6 mm		for pure analytes)	• -	B = 1,4-dioxane	IV: not stated; FLD: λ /nm: 326/294 (EmW/ExcW);	$\begin{array}{l} \alpha \text{-tocopherol: } 2.7 \text{ min;} \\ \alpha \text{-tocotrienol: } 3.1 \text{ min;} \\ \beta \text{-tocopherol: } 5.3 \text{ min;} \\ \beta \text{-tocotrienol: } 6.1 \text{ min;} \\ \gamma \text{-tocopherol: } 6.9 \text{ min;} \\ \gamma \text{-tocotrienol: } 7.8 \text{ min;} \\ \delta \text{-tocopherol: } 10.9 \text{ min;} \\ \delta \text{-tocotrienol: } 14.7 \text{ min} \end{array}$
and local flour 5 μ m, 125 × 4.5 mm Isocratically: 100 % A IV: 20 mm ³ ; δ -tocor UVD: λ /nm: 292; β + γ -toco CT: ambient α -tocor extraction: Heating of the sample with 50 % NaOH (w/v) for 3 min at 30 °C \rightarrow addition of ethanol and hydroquinon in water bath for 30 min at 80 °C \rightarrow cooling \rightarrow addition of water \rightarrow extraction with dimethyl ether ether ($\varphi_r = 1:1$) repeatedly \rightarrow evaporation under vacuum at 40 °C \rightarrow residue was redissolved in MeC [79] Emulsified Inertsil ODS-2, A = MeOH FR: 0.4 cm ³ min ⁻¹ ; Tocophe nutritional 5 μ m, 150 × 4.6 mm B = EtOH IV: 100 mm ³ ; supplements IS aqueous sodium sulfate solution containing 1 mM-EDTA-2NA \rightarrow applicatio onto conditioned cartridge (with MeOH and water) \rightarrow rinsing with demi water, 5 %, 25 %, and 50 % AC with ACN \rightarrow filtration. LoD: Tocopherol acetate: 0.1 ng. [68] Infant milk Tracer Spherisorb A = Water FR: not stated All-trans formulae ODS2 C18, 5 μ m, B = ACN IV: 20 mm ³ ; α -tocop 250 × 4.6 mm and C = MeOH UVD: λ /nm: 292, 323; guard column Isccratically: 4 % A, 1 % B, CT: not stated $\gamma = \alpha$ traction using hexane (3 times) \rightarrow washing with water \rightarrow addition of BHT \rightarrow filtration \rightarrow evaluation on BHT \rightarrow filtration \rightarrow evaluation of BHT \rightarrow filtration \rightarrow evaluation of BHT \rightarrow filtration \rightarrow evaluation of MCH. LoQ: All-trans retinol: 0.02 μ g cm ⁻³ , α -tocopherol: 0.04 μ g cm ⁻³ . [76] Emulsified Inertsil ODS-2, A = MeOH FR: 0.6 cm ³ min ⁻¹ ; D ₂ nutritional 5 μ m, 150 × 4.6 mm B = ACN IV: 200 mm ³ ; supplements with guard column Hitachigel 3011-0, 5 μ m, 100 × 4.6 mm B = ACN IV: 200 mm ³ ; supplements with guard column Wath 00 washed for 4 min with 100 % eluent A at flow rate 0.8 cm ³ min ⁻¹ at ambient temper- ature. Then retained substances were flushed to the analytical col- uum using 25 % of A and 75 % of					2 1	
Extraction: Heating of the sample with 50 % NaOH (w/v) for 3 min at 30 °C \rightarrow addition of ethanol and hydroquinon in water bath for 30 min at 80 °C \rightarrow cooling \rightarrow addition of water \rightarrow extraction with dimethyl ether ether ($\varphi_r = 1:1$) repeatedly \rightarrow evaporation under vacuum at 40 °C \rightarrow residue was redissolved in MeC [79] Emulsified Inertsil ODS-2, A = MeOH FR: 0.4 cm ³ min ⁻¹ ; Tocopher nutritional 5 μ m, 150 × 4.6 mm B = EtOH IV: 100 mm ³ ; supplements Isocratically: 50 % A, 50 % FLD: λ /nm: 295/325 (EmW/ExcW); CT: 40 °C Extraction: Sample was dissolved in 5 % aqueous sodium sulfate solution containing 1 mM-EDTA-2Na \rightarrow applicatio onto conditioned cartridge (with MeOH and water) \rightarrow rinsing with demi water, 5 %, 25 %, and 50 % AC with ACN \rightarrow filtration. LoD: Tocopherol acetate: 0.1 ng. [68] Infant milk Tracer Spherisorb A = Water FR: not stated All-trans formulae ODS2 C18, 5 μ m, B = ACN IV: 20 mm ³ ; α -tocop 250 × 4.6 mm and C = MeOH UVD: λ /nm: 292, 323; guard column Isocratically: 4 % A, 1 % B, CT: not stated 95 % C Extraction: Saponification by 60 % KOH solution in EtOH at ambient temperature with an addition of AA under I \rightarrow extraction using hexane (3 times) \rightarrow washing with water \rightarrow addition of BHT \rightarrow filtration \rightarrow evaresidue was redissolved in MeOH. LoQ: All-trans retinol: 0.02 μ g cm ⁻³ , α -tocopherol: 0.04 μ g cm ⁻³ . [76] Emulsified Inertsil ODS-2, A = MeOH FR: 0.6 cm ³ min ⁻¹ ; D ₂ nutritional 5 μ m, 150 × 4.6 mm B = ACN IV: 200 mm ³ ; supplements with guard column. Elution program and column UVD: λ /nm: 265; μ m, 100 × 4.6 mm column, column vashed for 4 min with 100 % eluent A at flow rate 0.8 cm ³ min ⁻¹ at ambient temper- ature. Then retained substances were flushed to the analytical col- umn using 25 % of A and 75 % of			,		IV: 20 mm ³ ; UVD: λ /nm: 292;	Retinol: 4 min; δ -tocopherol: 9 min; β + γ -tocopherol: 11 min; α -tocopherol: 13 min
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	iı	n water bath fo	or 30 min at 80 $^{\circ}\mathrm{C}$ \rightarrow	cooling \rightarrow addition of water \rightarrow	dition of ethanol and hydrodynamic hydrodynamic dimension with dimensional dimensionad di	$\begin{array}{l} \text{droquinone} \rightarrow \text{heating} \\ \text{thyl ether} \\ \text{petroleum} \end{array}$
Extraction: Sample was dissolved in 5 % aqueous sodium sulfate solution containing 1 mM-EDTA-2Na \rightarrow application onto conditioned cartridge (with MeOH and water) \rightarrow rinsing with demi water, 5 %, 25 %, and 50 % AC with ACN \rightarrow filtration.LOD:Tocopherol acetate: 0.1 ng.[68]Infant milk formulaeTracer Spherisorb ODS2 C18, 5 μ m, guard columnA = Water B = ACN Isocratically: 4 % A, 1 % B, Socratically: 4 % A, 1 % B, FT: not statedAll-trans α -tocop α -tocopExtraction:Saponification by 60 % KOH solution in EtOH at ambient temperature with an addition of AA under 1 \rightarrow extraction using hexane (3 times) \rightarrow washing with water \rightarrow addition of BHT \rightarrow filtration \rightarrow ever residue was redissolved in MeOH. LoQ:All-trans retinol: 0.02 μ g cm ⁻³ , α -tocopherol: 0.04 μ g cm ⁻³ .[76]Emulsified nutritional supplementsInertsil ODS-2, μ m, 150 \times 4.6 mm with guard column Hitachigel 3011-0, 5μ m, 100 \times 4.6 mm with 100 % eluent A at flow rate $0.8 \mathrm{cm}^3 \mathrm{min}^{-1}$ at ambient temper- ature. Then retained substances were flushed to the analytical col- umn using 25 % of A and 75 % of	[79]	nutritional	· · · ·	$\begin{array}{l} \mathrm{B} = \mathrm{EtOH} \\ \mathrm{Isocratically:} \ 50 \ \% \ \mathrm{A}, \ 50 \ \% \end{array}$	IV: 100 mm^3 ; FLD: λ/nm : 295/325 (EmW/ExcW);	Tocopherol acetate: 11 min
formulaeODS2 C18, 5 μm, 250 × 4.6 mm and guard columnB = ACNIV: 20 mm3; uVD: $\lambda/nm: 292, 323;$ UVD: $\lambda/nm: 292, 323;$ guard columnExtraction:Saponification by 60 % KOH solution in EtOH at ambient temperature with an addition of AA under N \rightarrow extraction using hexane (3 times) \rightarrow washing with water \rightarrow addition of BHT \rightarrow filtration \rightarrow eva residue was redissolved in MeOH. LoQ:All-trans retinol: 0.02 µg cm ⁻³ , α -tocopherol: 0.04 µg cm ⁻³ .[76]Emulsified nutritionalInertsil ODS-2, μ , 150 × 4.6 mm Hiachigel 3011-0, 5 μm, 100 × 4.6 mmA = MeOH Elution program and column $UVD: \lambda/nm: 265;$ with flucting: Injection into guard $CT: 40 ^{\circ}C$ 5 μm, 100 × 4.6 mm with 100 % eluent A at flow rate $0.8 ^{\circ}min^{-1}$ at ambient temper- ature. Then retained substances were flushed to the analytical col- umn using 25 % of A and 75 % of	0 V	onto conditioned with $ACN \rightarrow fil$	l cartridge (with MeOl tration.		ing 1 mM-EDTA \cdot 2Na \rightarrow	
Extraction: Saponification by 60 % KOH solution in EtOH at ambient temperature with an addition of AA under A \rightarrow extraction using hexane (3 times) \rightarrow washing with water \rightarrow addition of BHT \rightarrow filtration \rightarrow every residue was redissolved in MeOH. LoQ: All-trans retinol: 0.02 μ g cm ⁻³ , α -tocopherol: 0.04 μ g cm ⁻³ . [76] Emulsified Inertsil ODS-2, A = MeOH FR: 0.6 cm ³ min ⁻¹ ; D ₂ nutritional supplements with guard column Elution program and column UVD: $\lambda/\text{nm: 265}$; Sitching: Injection into guard CT: 40 °C 5 μ m, 100 × 4.6 mm column, column washed for 4 min with 100 % eluent A at flow rate 0.8 cm ³ min ⁻¹ at ambient temperature. Then retained substances were flushed to the analytical column using 25 % of A and 75 % of Description	[68]		ODS2 C18, 5 μ m, 250 × 4.6 mm and	$\begin{split} \mathbf{B} &= \mathbf{ACN}\\ \mathbf{C} &= \mathbf{MeOH}\\ \mathbf{Isocratically: 4 \% A, 1 \% B,} \end{split}$	IV: 20 mm ³ ; UVD: λ /nm: 292, 323;	All-trans retinol: 6 min; α -tocopherol: 20 min
LoQ:All-trans retinol: $0.02 \ \mu g \ cm^{-3}$, α -tocopherol: $0.04 \ \mu g \ cm^{-3}$.[76]EmulsifiedInertsil ODS-2, nutritionalA = MeOHFR: $0.6 \ cm^3 \ min^{-1}$; IV: 200 mm ³ ; supplementssupplements $5 \ \mu m$, $150 \times 4.6 \ mm$ B = ACNIV: 200 \ mm^3; switching: Injection into guard columnUVD: $\lambda/nm: 265$; UVD: $\lambda/nm: 265$; $5 \ \mu m$, $100 \times 4.6 \ mm$ column, column washed for 4 min with 100 % eluent A at flow rate $0.8 \ cm^3 \ min^{-1}$ at ambient temper- ature. Then retained substances were flushed to the analytical col- umn using 25 % of A and 75 % of	-	\rightarrow extraction us	sing hexane (3 times)	in EtOH at ambient temperatu		-
nutritional supplements $5 \ \mu m$, $150 \times 4.6 \ mm$ with guard column Hitachigel 3011-0, $5 \ \mu m$, $100 \times 4.6 \ mm$ B = ACNIV: 200 \ mm^3; UVD: $\lambda/nm: 265;$ switching: Injection into guard column, column washed for 4 min with 100 % eluent A at flow rate $0.8 \ cm^3 \ min^{-1}$ at ambient temper- ature. Then retained substances were flushed to the analytical col- umn using 25 % of A and 75 % of	LoQ: A	All- <i>trans</i> retinol	: 0.02 $\mu g \text{ cm}^{-3}$, α -toc	ppherol: 0.04 $\mu g \text{ cm}^{-3}$.		
tion with 100 $\%$ eluent A		nutritional supplements	5 μ m, 150 × 4.6 mm with guard column Hitachigel 3011-0, 5 μ m, 100 × 4.6 mm	${\rm B}={\rm ACN}$ Elution program and column switching: Injection into guar- column, column washed for 4 with 100 % eluent A at flow r 0.8 cm ³ min ⁻¹ at ambient ter ature. Then retained substant were flushed to the analytical umn using 25 % of A and 75 B for 15 s and then isocratic tion with 100 % eluent A	IV: 200 mm ³ ; UVD: λ /nm: 265; d CT: 40 °C min rate mper- ces col- % of elu-	D ₂ : 12 min
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	c v	$artridge \rightarrow rins$ vas redissolved	sing with demi water a	and 10 % MeOH \rightarrow elution wit		

Table 2 (Continued)

Source	Sample matrix	Column used	Mobile phase, Elution	Other chromatographic conditions	Retention times
[67]	Liquid preparations	LiChrospher 100 RP-18, 5 μ m, 125 × 4.0 mm	A = MeOH Isocratically: 100 % A	FR: 1.5 cm ³ min ⁻¹ ; IV: not stated; UVD: λ /nm: 300, 450; CT: ambient	(AA: 1.0 min); Retinyl acetate: 2.5 min; Retinyl propionate: 2.9 min; DL- α -tocopherol: 4.8 min; Retinyl palmitate: 15.5 min; β -carotene: 19 min
Extraction: LoQ:	AA: 1.5 μ g cm ⁻	ICl ₃ \rightarrow dilution with N ⁻³ , retinyl acetate: 0.2 e: 0.2 μ g cm ⁻³ , β -care	$2 \ \mu \text{g cm}^{-3}$, retinyl propionate:	0.1 μ g cm ⁻³ , DL- α -toco	
[29]	Olive oil	Tracer Extrasil ODS-2, 5 μ m, 150 × 4.0 mm	$\begin{array}{l} A = MeOH \\ B = Water \\ C = Butanol \\ Gradient program \\ 0 min: 92 \% A, 3 \% B, 5 \% C \\ 3 min: 92 \% A, 3 \% B, 5 \% C \\ 4 min: 92 \% A, 8 \% C \\ 9 min: 92 \% A, 8 \% C \\ Equilibration for 10 min \end{array}$	FR: 2.0 cm ³ min ⁻¹ ; IV: 50 mm ³ ; UVD: λ /nm: 292, 450; CT: 45 °C	α -tocopherol: 2.7 min; β -carotene 8.0 min
	$dm^{-3}) \rightarrow extraction in MeOH.$	ction with mixture of h	hanol with an addition of AA a exane—ethyl acetate ($\varphi_r = 85$		
LoQ:	α -tocopherol: 23	3 ng, β-carotene: 31 ng	5.		
[31]	Vegetable oils	Tracer Extrasil ODS-2, 5 μ m, 150 × 4.4 mm	$\begin{array}{l} \mathbf{A} = \mathbf{MeOH} \\ \mathbf{B} = \mathbf{Water} \\ \mathbf{Isocratically: 96 \% A, 4 \% B} \end{array}$	FR: 2.0 cm ³ min ⁻¹ ; IV: 50 mm ³ ; UVD: λ /nm: 292; CT: 45 °C	δ-tocopherol: 2.7 min; $\gamma+\beta$ -tocopherol: 3.3 min; α -tocopherol 3.9 min; α -tocopherol acetate: 5.5
Extraction: LoQ:	centrifugation –		$(1:9) \rightarrow mixing with MeOH as ng.$	nd ethanolic solution of	IS $(\varphi_{\rm r} = 1:3:1) \rightarrow$
[70]	Milk	Hypersil C18 BDS, 3 μ m, 150 × 0.3 mm	A = MeOH and water ($\varphi_r = 99 : 1$) B = MeOH and THF ($\varphi_r = 70 : 30$) Gradient program: 0 min: 100 % A, 0 % B 4 min: 100 % A, 0 % B 10 min: 0 % A, 100 % B	FR: 6 mm ³ min ⁻¹ ; IV: 0.06 mm ³ ; UVD: λ /nm: 325, 264, 280; CT: 20 °C	Retinol: 3 min; Retinyl acetate: 4 min; D ₂ : 6.5 min; D ₃ : 7 min; Tocopherol: 7.5 min; Provitamin D ₂ : 9.5 min; Provitamin D ₃ : 10.5 min; Tocopherol acetate: 11 mir
			15 min: 0 % A, 100 % B 17 min: 100 % A, 0 % B		Phylloquinone: 11.5 min; Retinyl palmitate: 13
Extraction: LoD:	\rightarrow washing of here residue was redii Retinol: 1 ng cm acetate: 38 ng c	exane extract with mix assolved in MeOH. n^{-3} , retinyl acetate: 2 m cm ⁻³ , provitamin D ₂ :	15 min: 0 % A, 100 % B	$0:1) \rightarrow \text{filtration} \rightarrow \text{eva}$ 5 ng cm ⁻³ , tocopherol: 32	Phylloquinone: 11.5 min; Retinyl palmitate: 13 min xtraction with hexane poration under $N_2 \rightarrow$ 2 ng cm ⁻³ , tocopherol
	\rightarrow washing of he residue was redi Retinol: 1 ng cm	exane extract with mix assolved in MeOH. n^{-3} , retinyl acetate: 2 m cm ⁻³ , provitamin D ₂ :	15 min: 0 % A, 100 % B 17 min: 100 % A, 0 % B Then equilibration 1 into the sample \rightarrow sonicating xture of MeOH—water ($\varphi_r = 9$ ng cm ⁻³ , D ₂ : 46 ng cm ⁻³ , D ₃ : 5	$0:1) \rightarrow \text{filtration} \rightarrow \text{eva}$ 5 ng cm ⁻³ , tocopherol: 32	Phylloquinone: 11.5 min; Retinyl palmitate: 13 min xtraction with hexane poration under $N_2 \rightarrow$ 2 ng cm ⁻³ , tocopherol
	\rightarrow washing of here residue was redi Retinol: 1 ng cm acetate: 38 ng c	exane extract with mix assolved in MeOH. n^{-3} , retinyl acetate: 2 m cm ⁻³ , provitamin D ₂ :	15 min: 0 % A, 100 % B 17 min: 100 % A, 0 % B Then equilibration 13 into the sample \rightarrow sonicating 14 xture of MeOH—water ($\varphi_r = 9$ 15 mg cm ⁻³ , D ₂ : 46 ng cm ⁻³ , D ₃ : 5 19 ng cm ⁻³ , provitamin D ₃ : 7 A = Hexane	$0:1) \rightarrow \text{filtration} \rightarrow \text{eva}$ 5 ng cm ⁻³ , tocopherol: 32	Phylloquinone: 11.5 min; Retinyl palmitate: 13 min xtraction with hexane poration under $N_2 \rightarrow$ 2 ng cm ⁻³ , tocopherol

Table 2 (Continued)

	Sample matrix	Column used	Mobile phase, Elution	Other chromatographic conditions	Retention times
[71]	Cooked meals	Spherisorb ODS-2 C18, 5 μ m, 250 × 4.6 mm	A = MeOH B = Water Isocratically: 96 % A, 4 % B		Retinol: 4.0 min; inyl acetate (IS): 6 min; D ₂ : 11.5 min; D ₃ : 12.4 min; α -tocopherol: 16.0 min
Extraction:	for 30 min at 80	$^{\circ}C$ under $N_2 \rightarrow repea$	f absolute ethanol and 50 % K ted extraction with $Et_2O \rightarrow E$ $Na_2SO_4 \rightarrow evaporation \rightarrow res$	OH ($\varphi_{\rm r} = 4:1$) \rightarrow addi Et ₂ O fractions were comb	tion of $AA \rightarrow heating$ bined and washed with
LoD:			herol: 8.3 μ g/100 g of food.		
[78]	Baby food products	Gynkotek ODS Hypersil, 5 μ m, 250 × 4.6 mm, guard column, reduction column dry-filled with zinc powder 20 × 4.0 mm	$\begin{array}{l} A = CH_2Cl_2\\ B = MeOH\\ C = Methanolic solution\\ containing 1.37 g zinc chlo-ride, 0.41 g sodium acetate\\ and 0.30 g acetic acid\\ Isocratically A : B : C\\ (\varphi_r = 100 : 900 : 5) \end{array}$	FR: 1.0 cm ³ min ⁻¹ ; IV: 100 mm ³ ; FLD: λ /nm: 243/430 (EmW/ExcW); CT: 40 °C	2',3'- dihydrophylloquinone (IS); Phylloquinone: not stated
Extraction: LoD:	with MeOH \rightarrow a	ddition of IS \rightarrow evapo MeOH—water ($\varphi_r = 9$ P.	$\begin{array}{l} (\varphi_{\rm r} = 100:500:5) \\ \text{MeOH} (\varphi_{\rm r} = 2:1) \rightarrow \text{filtration} \\ \text{oration} \rightarrow \text{residue was redissolv} \\ 9:1) \rightarrow \text{centrifugation} \rightarrow \text{evap} \end{array}$	ved in hexane \rightarrow purifica	tion as follows: mixing
[77]	Oils and margarines	Vydac 201 TP54, 5 μ m, 250 × 4.6 mm	B = MeOH Isocratically: 5 % A, 95 % B	 FR: 1.0 cm³ min⁻¹; IV: 30 mm³; Dual electrode ECD: in redox mode upstream electrode: -1.1 V, downstream electrode: 0 V; CT: not stated 	Menaquinone-4 (IS): 6.7 min; Phylloquinone: 10.8 min 2',3'-dihydrovitamin K ₁ 13.0 min
Extraction	Dilution of the s	ample with hexane $-$	\rightarrow addition of IS \rightarrow shaking \rightarrow	standing for 30 min \rightarrow	evaporation of aliquot
Extraction.	\rightarrow residue was r HPLC (column 1.5 cm ³ /min. Co	edissolved in hexane μ Porasil, 5 μ m, 300 :	\rightarrow filtration \rightarrow purification of \times 3.9 mm) with hexane conta efore and 1.5 min after elution analytical HPLC.	aining 1 % Et ₂ O as mot	parative straight-phase bile phase at flow rate
[73]	\rightarrow residue was r HPLC (column 1.5 cm ³ /min. Co and redissolved i Emulsified	edissolved in hexane μ Porasil, 5 μ m, 300 solution time: 2 min b in 0.5 cm ³ of MP for a Inertsil ODS 80A, 5 μ m, 150 × 3.0 mm	\times 3.9 mm) with hexane conta efore and 1.5 min after elution analytical HPLC. A = MeOH	sining 1 % Et ₂ O as mot of vitamins. Collected fr FR: 0.4 cm ³ min ⁻¹ ; IV: 100 μ l; FLD: λ /nm: 480/350 (EmW/ExcW);	parative straight-phase bile phase at flow rate
[73]	→ residue was r HPLC (column 1.5 cm ³ /min. Co and redissolved i Emulsified nutritional supplements C2 cartridges w	edissolved in hexane μ Porasil, 5 μ m, 300 \pm ollection time: 2 min b in 0.5 cm ³ of MP for a Inertsil ODS 80A, 5 μ m, 150 \times 3.0 mm ere conditioned with lutamate \rightarrow application	× 3.9 mm) with hexane conta efore and 1.5 min after elution analytical HPLC. A = MeOH B = EtOH Isocratically: 50 % A,	thining 1 % Et ₂ O as moto of vitamins. Collected fr FR: 0.4 cm ³ min ⁻¹ ; IV: 100 μ l; FLD: λ /nm: 480/350 (EmW/ExcW); CT: 40 °C r to use \rightarrow sample was	arative straight-phase bile phase at flow rate action was evaporated Retinyl palmitate: 7.5 min dissolved in 20 mM-
[73] Extraction:	→ residue was r HPLC (column 1.5 cm ³ /min. Co and redissolved i Emulsified nutritional supplements C2 cartridges w monosodium L-g	edissolved in hexane μ Porasil, 5 μ m, 300 \pm ollection time: 2 min b in 0.5 cm ³ of MP for a Inertsil ODS 80A, 5 μ m, 150 \times 3.0 mm ere conditioned with lutamate \rightarrow application	× 3.9 mm) with hexane conta efore and 1.5 min after elution analytical HPLC. A = MeOH $B = EtOH$ Isocratically: 50 % A, 50 % B MeOH and demi water prior	fR: 0.4 cm ³ min ⁻¹ ; IV: 100 μ l; FLD: λ /nm: 480/350 (EmW/ExcW); CT: 40 °C r to use \rightarrow sample was ith demi water \rightarrow elution FR: 1.0 cm ³ min ⁻¹ , IV: not stated; UVD: λ /nm: 292, 325; CT: 50 °C α -toce	parative straight-phase bile phase at flow rate action was evaporated Retinyl palmitate: 7.5 min dissolved in 20 mM- h with EtOH. Retinol: 3.2 min; Retinyl acetate: 4.2 min δ -tocopherol: 5.4 min; γ -tocopherol: 5.4 min; α -tocopherol: 6.8 min; pherol acetate: 8.8 min;
[73] Extraction: LoD: [16]	\rightarrow residue was r HPLC (column 1.5 cm ³ /min. Co and redissolved i Emulsified nutritional supplements C2 cartridges w monosodium L-g Retinyl palmitat Infant formulas Ist method: The \rightarrow filtration \rightarrow a anhydrous Na ₂ S \rightarrow evaporation - filtration of top 2nd method: Th	edissolved in hexane μ Porasil, 5 μ m, 300 \pm illection time: 2 min b in 0.5 cm ³ of MP for a Inertsil ODS 80A, 5 μ m, 150 \times 3.0 mm ere conditioned with lutamate \rightarrow applicative e: 0.1 pg dm ⁻³ . Tracer Spherisorb ODS-2 C18, 5 μ m, 250 \times 4.6 mm and guard column sample was stirred with ddition of water \rightarrow sha O ₄ \rightarrow evaporation \rightarrow 1 \rightarrow lipid residuum was organic layer.	× 3.9 mm) with hexane conta efore and 1.5 min after elution analytical HPLC. A = MeOH B = EtOH Isocratically: 50 % A, 50 % B MeOH and demi water prior on onto cartridge \rightarrow rinsing w A = MeOH Isocratically: 100 % A ith CH ₂ Cl ₂ —EtOH ($\varphi_r = 2 : I$ aking \rightarrow layers were allowed to residue was redissolved in Et ₂ C redissolved in EtOH \rightarrow addited d in absolute EtOH \rightarrow stirring	sining 1 % Et ₂ O as mot of vitamins. Collected fr FR: 0.4 cm ³ min ⁻¹ ; IV: 100 μ l; FLD: λ /nm: 480/350 (EmW/ExcW); CT: 40 °C r to use \rightarrow sample was ith demi water \rightarrow elution FR: 1.0 cm ³ min ⁻¹ , IV: not stated; UVD: λ /nm: 292, 325; CT: 50 °C α -tocc Retin 1) under N ₂ for 30 min at separate \rightarrow filtration of α \rightarrow filtration (to elimination of the dimensional sector).	parative straight-phase bile phase at flow rate action was evaporated Retinyl palmitate: 7.5 min dissolved in 20 mM- n with EtOH. Retinol: 3.2 min; Retinyl acetate: 4.2 min δ -tocopherol: 5.4 min; γ -tocopherol: 5.4 min; α -tocopherol: 6.8 min; pherol acetate: 8.8 min; nyl palmitate: 19.5 min t ambient temperature CH ₂ Cl ₂ phase through te nonlipid substances) g \rightarrow centrifugation \rightarrow

Table 2 (Continued)

Source	Sample matrix	Column used	Mobile phase, Elution	Other chromatographic conditions	Retention times
[80]	Animal feeds	Novapak C18, 150 \times 3.9 mm	$\label{eq:alpha} \begin{split} \mathbf{A} &= \mathbf{MeOH}\\ \text{Isocratically: 100 \% A} \end{split}$	FR: $1.5 \text{ cm}^3 \text{ min}^{-1}$; IV: 50 mm ³ ; UVD: λ/nm : 290; CT: not stated	All-trans retinol: 2.3 min; Cholecalciferol: 4.6 min; α -tocopherol: 5.7 min; Ergosterol: 7.7 min
Extraction: LoD:	$\begin{array}{l} N_2 \ \rightarrow \ shaking \\ evaporation \ uncertain \end{array}$				tion tube flushed with
[20]	Egg yolk	Vydac 201 TP 54	A = MeOH B = Water Isocratically: 83 % A, 17 % B	$1 \text{ cm}^3 \text{ min}^{-1};$ IV: 25 mm ³ ; UVD: $\lambda/\text{nm}:$ 264; CT: 25 °C	25-(OH)-D ₃ : 13.5 min; 25-(OH)-D ₂ (IS): 15.5 min
Extraction:	conditioned with hexane \rightarrow elution clean-up was per of hexane and I	h hexane: application of on of 25-(OH)- D_2 and 2 erformed using semi-pr	onification \rightarrow extraction \rightarrow of sample \rightarrow rinsing with hex 5-(OH)-D ₃ with 6 % IPOH in eparative HPLC using 10 µn MP. Flow rate 1 cm ³ /min,	filtration \rightarrow SPE purification \rightarrow elution of D ₂ and I in hexane. 25-(OH)-D fraction (300 × 3.9 mm) μ Poras	D_3 with 0.5 % IPOH in on was evaporated and il column and mixture
[50]	Yoghurt	$220 \times 4.6 \text{ mm and}$ guard column RP18,	A = 2.5 mM-acetic acid— sodium acetate in MeOH and water ($\varphi_r = 99 : 1$) Isocratically: 100 % A	FR: 1.0 cm ³ min ⁻¹ ; IV: 10 mm ³ ; ECD: glassy carbon electrode at +1300 mV vs. Ag/AgCl electrode; UVD: λ /nm: 280 nm;	All- <i>trans</i> retinol: 4 min; Cholecalciferol: 8 min; α -tocopherol: 10 min
Extraction:	for 2 h and prot was redissolved 2nd method (wir with mixture of	$ected$ from light \rightarrow centric from light \rightarrow clean-up thalkaline hydrolysis a central ethanol and 80 % aqu	pple was mixed with hexane ntrifugation → separation of on C18 cartridges → sample nd without clean-up): sample leous KOH ($φ_r = 50 : 15$) w l in MeOH → filtration.	organic phase \rightarrow evaporate e diluted with MeOH. e was saponified overnight a	tion at $50 ^{\circ}\text{C} \rightarrow \text{residue}$ at ambient temperature
[52]	Emulsified nutritional supplements	Inertsil ODS-2, 5 μ m, 150 × 4.6 mm and column RC-10 with platinum oxide catalyst 30 × 4 mm	Isocratically: 50 $\%$ A,	FR: 0.6 cm ³ min ⁻¹ ; IV: 100 mm ³ ; FLD: λ /nm: 430/320 (EmW/ExcW); CT: 40 °C; Post-column reduction	Phylloquinone: 8 min
Extraction: LoD:		rtridge (with MeOH a	eous Na_2SO_4 solution contained H ₂ O) \rightarrow rinsing with der		
[72]	Emulsified nutritional	Inertsil ODS 80A,	$\begin{array}{l} \mathbf{A} = \mathbf{MeOH} \\ \mathbf{B} = \mathbf{EtOH} \\ \mathbf{Isocratically: 50 \% A and} \\ \mathbf{50 \% B} \end{array}$	FR: 0.6 cm ³ min ⁻¹ ; IV: 100 mm ³ ; FLD: λ /nm: 480/350 (EmW/ExcW); CT: 40 °C	Retinyl acetate: 10 min
	supplements	5 μ m, 150 × 4.6 mm	A = ACN B = EtOH Isocratically: 70 % A, 30 % B	FR: 1.6 cm ³ min ⁻¹ ; IV: 200 mm ³ ; UVD: λ /nm: 450; CT: 40 °C	$\beta\text{-carotene:}$ 5.4 min
Extraction: LoD:		conditioned with MeO OH.	ous sodium sulfate solution H and demi water \rightarrow rinsin	containing 1 mM-EDTA.2	

Table 2 (Continued)

	Sample matrix	Column used	Mobile phase, Elution	Other chromatographic conditions	Retention times			
[51]	Human plasma	Kromasil C1, 5 μ m, 100 × 4.6 mm	$\begin{aligned} \mathbf{A} &= \mathbf{MeOH} \\ \mathbf{B} &= \mathbf{ACN} \\ \mathbf{C} &= \mathbf{Water} \\ \mathbf{Isocratically: 50 \% A,} \\ \mathbf{35 \% B, 15 \% C} \end{aligned}$	FR: $1.5 \text{ cm}^3 \text{ min}^{-1}$; IV: 100 mm^3 ; UVD: λ/nm : 292; CT: ambient	$\alpha\text{-tocopherol:}$ 4.5 min			
Extraction:	Plasma was mix	ed with tungstate—m	agnesium chloride \rightarrow addition	of MeOH \rightarrow mixing \rightarrow	centrifugation.			
[19]	Human plasma	J'sphere ODS-H80, 4 $\mu \rm{m},$ 150 \times 4.6 mm		FR: $1 \text{ cm}^3 \text{ min}^{-1}$; IV: not stated; UVD: λ/nm : 265; CT: $40 ^\circ\text{C}$	25-(OH)-D ₃ : 17.3 min; 25-(OH)-ergosterol (IS) 23.5 min			
Extraction: LoD:	Addition of EtOH into plasma \rightarrow mixing \rightarrow centrifugation \rightarrow addition of IS (ethanolic solution) and 0.2 M-KOH into supernatant \rightarrow extraction with Et ₂ O \rightarrow washing with 25 % MeOH \rightarrow evaporation of organic layer in vacuum \rightarrow residuum was redissolved in hexane—IPOH ($\varphi_r = 98.5 : 1.5$) and passed through silica gel column \rightarrow rinsing with hexane—IPOH ($\varphi_r = 98.5 : 1.5$) \rightarrow elution with hexane—IPOH ($\varphi_r = 84 : 16$) \rightarrow evaporation to dryness \rightarrow residue was redissolved in MeOH. 25-(OH)-D ₃ : 5 ng cm ⁻³ .							
[18]	Plasma	-	A = MeOH with 0.025 M- HClO ₄ B = ACN with 0.025 M- HClO ₄ Isocratically: 5 % A, 95 % B	FR: 1.2 cm ³ min ⁻¹ ; IV: 50 mm ³ (fraction 25-(OH)-D), IV: 180 mm ³ (fraction 24,25-(OH) ₂ -D), Coulometric ECD: guard cell: + 0.65 V, analytical cell 1: + 0.20 V, analytical cell 2: + 0.60 V CT: not stated	24,25-(OH) ₂ -D ₃ : 18.5 min; 24,25-(OH) ₂ -D ₂ : 18.7 min; 25-(OH)-D ₃ : 23.4 min; 25-(OH)-D ₂ : 25.2 min			
Extraction:	Plasma was dil	uted with water and	extracted with mixture of M	$eOH-CH_2Cl_2 \rightarrow evapo$	ration \rightarrow residue was			
LoD:	mobile phase: 5 were evaporated	.5 $\%$ IPOH in hexane	and subjected to preparative , flow rate 1.5 cm ³ /min. Coll edissolved in 5 % MeOH in AC $_{3}$: $\approx 50 \text{ pg cm}^{-3}$.	ected fractions 25-(OH)-				
	mobile phase: 5 were evaporated	.5 % IPOH in hexane l under vacuum and re	, flow rate 1.5 $\text{cm}^3/\text{min.}$ Collections of the constant	ected fractions 25-(OH)- CN.	D and 24,25-(OH) ₂ -D Retinoic acid: 1.9 min; Menadione: 3.2 min; Retinol: 4.2 min; Retinal: 5.8 min; D ₂ : 8.0 min; D ₃ : 8.6 min; K ₂ : 10.0 min;			
LoD: [81]	mobile phase: 5 were evaporated Both 24,25-(OH Plasma Plasma dodecylsulfate of	 .5 % IPOH in hexane I under vacuum and replace (OH)-D; Altech C18, 5 μm, 250 × 4.6 mm xed with 1 M-HCl → rr Triton X-100) → mi .5 ng, retinol: 1.0 ng, 	, flow rate 1.5 cm ³ /min. Coll dissolved in 5 % MeOH in AC $_{3:} \approx 50 \text{ pg cm}^{-3}$. A = MeOH with 0.1 % TEA B = EtOH with 0.1 % TEA Isocratically: 85 % A,	ected fractions 25-(OH)- CN. FR: 1 cm ³ min ⁻¹ ; IV: 20 mm ³ ; UVD: λ /nm: 245; CT: not stated Cl ₂ or CHCl ₃ (eventual)	D and 24,25-(OH) ₂ -D Retinoic acid: 1.9 min; Menadione: 3.2 min; Retinol: 4.2 min; Retinal: 5.8 min; D ₂ : 8.0 min; D ₃ : 8.6 min; K ₂ : 10.0 min; Phylloquinone: 16.4 min by addition of sodium			
LoD: [81] Extraction:	mobile phase: 5 were evaporated Both 24,25-(OH Plasma Plasma dodecylsulfate of Retinoic acid: 1	 .5 % IPOH in hexane I under vacuum and replace (OH)-D; Altech C18, 5 μm, 250 × 4.6 mm xed with 1 M-HCl → rr Triton X-100) → mi .5 ng, retinol: 1.0 ng, 	, flow rate 1.5 cm ³ /min. Collections dissolved in 5 % MeOH in AC $_{3:} \approx 50 \text{ pg cm}^{-3}$. A = MeOH with 0.1 % TEA B = EtOH with 0.1 % TEA Isocratically: 85 % A, 15 % B Addition of hexane or CH ₂ 6 xing \rightarrow centrifugation.	ected fractions 25-(OH)- CN. FR: 1 cm ³ min ⁻¹ ; IV: 20 mm ³ ; UVD: λ /nm: 245; CT: not stated Cl ₂ or CHCl ₃ (eventual)	D and 24,25-(OH) ₂ -D Retinoic acid: 1.9 min; Menadione: 3.2 min; Retinol: 4.2 min; Retinal: 5.8 min; D ₂ : 8.0 min; D ₃ : 8.6 min; K ₂ : 10.0 min; Phylloquinone: 16.4 min by addition of sodium			

Source	Sample matrix	Column used	Mobile phase, Elution	Other chromatographic conditions	Retention times		
Extraction:	EtOH was added into the sample \rightarrow mixing \rightarrow addition of hexane \rightarrow mixing \rightarrow organic layer was removed and extraction was repeated \rightarrow extracts were combined \rightarrow washing with mixture MeOH—water ($\varphi_r = 9 : 1$) \rightarrow cen- trifugation \rightarrow upper organic layer was separated and filtered \rightarrow evaporation under N ₂ \rightarrow sample was redissolved in EtOH.						
LoD:	Normal-bore column: D_3 : 19.8 ng, tocopherol: 106.3 ng, phylloquinone: 6.4 ng, retinyl palmitate: 11.8 ng. Narrobore column: D_3 : 0.4 ng, tocopherol: 2.8 ng, phylloquinone: 0.4 ng, retinyl palmitate: 0.5 ng.						
[23]	Human serum	Shodex C18, 250 \times 4.6 mm followed by column packed with platinum catalyst (100 \times 4.6 mm), where VKs were reduced	A = EtOH containing 0.025 M-sodium perchlorate B = MeOH containing 0.025 M-sodium perchlorate Isocratically: 50 % A, 50 % B	Flow rate: $0.6 \text{ cm}^3 \text{ min}^{-1}$; IV: 100 mm^3 ; ECD: glassy carbon electrode at + 0.6 V vs. Ag/AgCl electrode; CT: $40 ^\circ\text{C}$	Vitamin K analogues: MK-4: 10 min; MK-5: 16 min; Phylloquinone: 17 min; MK-6: 20 min; MK-7: 27 min; MK-8: 38 min; MK-9: 50 min; MK-10: 70 min		
Extraction: LoD:	\rightarrow centrifugation to Accubond OI vitamins K were at 45 °C and red	$n \rightarrow hexane layer was$ DS cartridge previousl e eluted with mixture of	CtOH and hexane ($\varphi_r = 1 : 4$) we evaporated under N ₂ at 45 °C – y conditioned with water and N of MeOH—EtOH ($\varphi_r = 2 : 3$) – 2—10 pg.	\rightarrow residue was redissolved MeOH \rightarrow cartridge was redissolved	l in EtOH and loaded rinsed with MeOH \rightarrow		
[74]	Human plasma	Merck LiChrospher 100 RP-18, 5 μ m, 250 × 4.0 mm	$\begin{array}{l} A = ACN \\ B = MeOH \\ C = Water \\ 0 min: 90 \% A, 4 \% B, 6 \% C \\ 5 min: 90 \% A, 4 \% B, 6 \% C \\ 11 min: 40 \% A, 60 \% B \\ 15 min: 40 \% A, 60 \% B \\ Equilibration for 2 min. \end{array}$	FR: 1.5 cm ³ min ⁻¹ ; IV: 100 mm ³ ; UVD: λ/nm: 267, 292; CT: 40 °C	Retinol: 4.0 min; 25-(OH)-D ₃ : 4.9 min; 25-(OH)-D ₂ : 5.3 min; 1α -hydroxyvitamin D ₃ (IS): 7.4 min; α -tocopherol: 13.6 min; Tocopherol acetate: 14.8 min		
Extraction: LoD:	gation \rightarrow hexan		ple \rightarrow mixing \rightarrow extraction with evaporated under N ₂ and redise		$= 90:10) \rightarrow centrifu-$		
[75]	Human plasma	5 $\mu {\rm m},250\times4.6$ mm	A = Hexane B = IPOH Isocratically: A and B (659.34 : 0.786, w/w)	FR: $1.0 \text{ cm}^3 \text{ min}^{-1}$; IV: 60 mm^3 ; UVD: λ/nm : 297; CT: ambient	α -tocopherol: 40.8 min; d_6 - α -tocopherol: 42.5 min		
Extraction: LoQ:	Addition of 1.006 g cm ³ NaBr solution into the plasma \rightarrow centrifugation \rightarrow upper phase containing triacylglycerols was collected \rightarrow addition of demi water, EtOH, deferoxamine mesylate and hexane \rightarrow mixing \rightarrow centrifugation \rightarrow hexane phase was collected and water phase extracted again with mixture of hexane and BHT \rightarrow hexane layers were combined \rightarrow evaporation under N ₂ \rightarrow the residue was redissolved in mixture of hexane and BHT. d_6 - α -tocopherol: 83 pmol cm ⁻³ .						
[17]	Human serum	,	$\begin{array}{l} A = hexane: IPOH: acetic\\ acid (\varphi_r = 1000: 43: 0.675)\\ B = hexane: IPOH: acetic\\ acid (\varphi_r = 1000: 17.5: 0.675)\\ Gradient program:\\ 0\ min: 100\ \%\ A, 0\ \%\ B\\ 15\ min: 100\ \%\ A, 0\ \%\ B\\ 25\ min: 0\ \%\ A, 100\ \%\ B\\ 35\ min: 0\ \%\ A, 100\ \%\ B\\ 45\ min: 100\ \%\ A, 0\ \%\ B\\ 59\ min: 100\ \%\ A, 0\ \%\ B\\ \end{array}$	9-c All-t: All-	13-cis retinal: 7 min; 9-cis retinal: 8.5 min; All-trans retinal: 10 min is retinoic acid: 12.5 min; is retinoic acid: 14 min; rans retinoic acid: 15 min Carotenoid (IS): 29 min; 13-cis retinol: 32.5 min; All-trans retinol: 37 min trans-4-oxo-retinoic acid: 38.5 min; oxo-retinoic acid: 41 min;		
	13- <i>cis</i> -4-oxo-retinoic acid: 43.5 mi Addition of EtOH, 2 M-NaOH, IS, and hexane into the serum \rightarrow shaking \rightarrow centrifugation \rightarrow upper organic layer (fraction A) and lower layer were collected separately \rightarrow addition of 2 M-HCl and hexane into water layer \rightarrow shaking \rightarrow centrifugation \rightarrow upper layer (fraction B) was collected \rightarrow collected fractions A and B were evaporated under N ₂ \rightarrow residue was redissolved in hexane.						

acid-containing species by a single extraction procedure [5].

– As pantothenic acid is sensitive to high and low pH, acidic and alkaline hydrolyses are not useful for liberation of pantothenic acid from foods. This liberation is performed by enzyme treatment. A number of enzymes have been proposed: takadiastase, papain, mylase, clarase, alkaline phosphatase, pantetheinase and they are used alone or in association, for the determination of pantothenic acid in food [8]. The liberation of pantothenic acid from bound forms is always required for the total quantification of vitamin B₅ in foods by various techniques [8]. In the paper [9] an addition of acetic acid was found to be effective to achieve a protein and fat-free fraction suitable for direct injection and vitamin quantification.

– Pyridoxine is normally stable. Extraction can be performed using mineral acids or enzyme treatment [10, 37]. According to the paper [38] acidic hydrolysis at 121 °C for the duration of 30 min followed by enzymatic hydrolysis with acidic phosphatase and β -glucuronidase liberates the main forms of vitamin B₆. Possibilities of liberation of bonded vitamin B₆ from food are discussed also in paper [39].

– As it was already mentioned cyanocobalamin for its stability is used for food supplementation [14]. Cyanocobalamin was observed to be stable in a parenteral mixture for 4 d at 2—8 °C [34]. For extraction, for example 50 % methanol [40], or buffers [13] can be used.

The presence of inorganic ions in vitamins tablets, particularly copper and iron salts, may cause oxidation or complex binding of folic acid into complex during extraction. Stability of folic acid in extracts from multivitamin/mineral preparations was significantly higher when a chelating agent (EDTA) was present [12]. The addition of EDTA to extraction buffer excludes the possibility of using a microbiological detection of folic acid [12] as a comparative method. Riboflavin is known to sensitize the photodegradation of folic acid resulting in the deactivation of the vitamin [41]. UV light converts folic acid into fluorescent material. When folic acid is irradiated with UV light it is first converted to pterine-6carboxaldehyde and *p*-aminobenzoyl-L-glutamic acid. On further irradiation the aldehyde is converted to the corresponding pterine-6-carboxylic acid, which is fluorescent and finally to the decarboxylated 2-amino-4-hydroxypteridine. Daylight, pH, and heat have the most destructive effects on the solution of folic acid. At pH 7.6 folic acid solutions exhibit optimum stability [42]. Due to the nature of folic acid, SPE can be easily performed on cartridges with strong anion exchanger.

- Retinoids are thermolabile, photosensitive, and easily attacked by oxidants. This is mainly due to electron-rich polyene chain [24, 43, 44]. The electronrich polyene chain in retinoids makes them extremely sensitive to light below 500 nm, oxygen, trace metals, strong acids, and excessive heat. If retinoids are exposed to daylight, extensive isomerization will occur within a short time. All sample treatment should therefore preferably be performed in amber containers under red or yellow light [24]. They are also labile towards strong acids. Anhydrous solvents containing even traces of acid cause structural changes of retinoids. Thus, use of strong acid should be avoided. Alkali usually is not harmful to retinoids. Vitamin A, which is strongly bound in the fat globules of human milk, is present primarily as retinyl esters [45]. As these fat globules are very stable, extreme conditions of saponification must be applied to assure the complete release of vitamin A from the linkage. In this process, the retinyl esters are hydrolyzed so that vitamin A is quantified as retinol using HPLC after extraction [45]. Purging the sample with argon gas [24] and the use of antioxidants is one of the most common strategies to prevent oxidation during the extraction and sample treatment, especially when the samples are saponified to obtain free carotenoids. Ethoxyquin, pyrogallol, ascorbic acid, and sodium ascorbate are examples of antioxidants used, but BHT is the most extensively used antioxidant. Normally BHT is used at 0.01 % or 0.1 % in the extraction solution [46, 24]. Care should be taken since BHT can interfere with some chromatographic systems. Samples to be analyzed the same day can be kept at 4°C, otherwise they should be stored at -20 °C or lower temperatures [24].

– Individual studies have provided quite contradictory data about stability of vitamin D and it appears that the stability of this vitamin is strongly dependent on the processing technique used [47]. Losses of vitamin D during household cooking were < 10 % and hence, household cooking would not seem to lessen the intake of vitamin D from foods [47]. According to information of paper [48] general assumption is that the stability of vitamin D is high. Source [49] provides information that vitamin D is sensitive to alkaline pH, light, and heat. Saponification was proved to be necessary for extraction of vitamin D from yoghurt [50], while good recoveries were obtained for tested vitamins A and E (nearly comparable with results after saponification) using method with direct extraction.

– Vitamin E is photolabile and sensitive to heat and oxidation [30]. Also in this case, if saponification is necessary, a usage of antioxidants is recommended. According to source [5], both vitamins A and E in food could not be measured simultaneously, because the longer time required for saponification of retinyl palmitate destroys some of the α -tocopherol. Authors of [51] developed a method utilizing magnesium chloride and tungstate to avoid saponification and high temperatures, which normally affect stability of vitamin E in the presence of oxygen. Another approach of sample preparation for vitamins A and E is a usage of SFE as described in paper [30] for cosmetics. SFE is emerging as a valuable alternative to conventional liquid extraction for the isolation of organic analytes from solid and semi-solid matrices.

– Vitamin K_1 is known to be unstable in the presence of metal ions. Addition of EDTA into sample solution increases stability of the vitamin [52]. Paper [53] reported that stability studies on the vitamin K_1 content of vegetable oils demonstrated that the vitamin was stable to heat and processing but it was rapidly destroyed by both fluorescence and sunlight.

5. HPLC QUANTIFICATION

RP HPLC vs. normal phase offers certain practical advantages, such as better column stability, reproducibility of retention times, and faster equilibration [29] and therefore it is preferably used.

Buffers, mostly KH₂PO₄ in the pH range 2-3 [32, 35], diluted acids [28, 54] or buffers with an addition of ion-pair reagent, namely alkylammonium salts or hydroxides [4, 33, 55, 56], sometimes with an addition of organic solvent, are used as mobile phases for evaluation of vitamin C. C_{18} sorbent is mainly used. It would be mentioned that AA isomers can be separated on silica-based aminopropyl columns, but the AA is not stable on these columns [5]. In contrast to AA, DHAA has a weak UV absorption and no response to electrochemical detection [4]. In order to increase the sensitivity for dehydroascorbic acid, derivatization prior to or after the chromatographic separation is necessary. Prior to HPLC, dehydroascorbic acid may be reduced to ascorbic acid by homocysteine, L-cysteine or dithiothreitol or derivatized with o-phenyldiamine to form the fluorophore [56, 57, 4]. Usually, DHAA is determined as the difference between the total AA, after DHAA reduction, and AA content of the original sample [57].

It is usually possible to chromatograph vitamins of B-group simultaneously, if those are present in sufficient concentrations (in particular cyanocobalamin). Some of B vitamin compounds well suit to ion-pair or ion-exchange chromatography (see below) due to their ionic nature. Consequently their retention can be increased by addition of ion-pair reagent. In contrary, riboflavin and cyanocobalamin are sufficiently retained on C_{18} sorbents. Mixtures of phosphate or acetate buffers with an addition of ion-pair reagent (salts of alkanesulfonic acids for B_1 , B_3 , B_6 and alkylammonium salts or hydroxides for FA) and of organic solvents like MeOH or ACN are used as mobile phases. Either isocratic [9, 10, 12, 13, 25, 37, 58-63, etc.] or gradient elution [1, 2, 6, 26, 27, 60, 64-66, etc.] is used. Usage of new stationary phases for basic compounds involving a ligand with amide groups (such as RP-AmideC₁₆) enables determination of Bgroup vitamins without necessity of addition of ionpair reagent [1, 2]. UV detection is most common for vitamin B compounds. Cyanocobalamin is detected usually at $\lambda \approx 360$ nm, pantothenic acid, which has no significant chromophore, is detected at nonselective wavelength ≈ 200 nm with increasing risk of interferences from most organic substances. Due to weak retention of pantothenic acid, multiwavelength UV detection could be chosen for the unambiguous evaluation of putative pantothenate peak identity under chromatographic conditions used. Common wavelength about 270—280 nm is often used for determination of the rest of B vitamin compounds. The use of FLD increases the specificity and the sensitivity of the detection, but except pyridoxine, riboflavin [25], and cyanocobalamin [13], which show a natural fluorescence response, a post-column derivatization is necessary. The application of ion-pairing RP chromatography to determination of niacin in food products often requires complex clean-up procedures, like cartridge extraction and column switching [7].

MeOH, ACN, EtOH, THF, butanol or their mixtures (sometimes with small addition of water) in reversed-phase chromatography or hexane with addition of IPOH and/or acetic acid or 1,4-dioxane in normal-phase chromatography are used as mobile phases for quantification of vitamins A, D, E, and K.

Because of weak retention of carotenes on silica phases, RP chromatography with UVD is mainly applied for carotenoids [29-31, 43, 44, 64, 67-74, etc.]. On the other hand, normal-phase chromatography is required for retinoid analysis especially if cis- and trans-isomers of retinol have to be separated [15, 17, 75]. Retinoids have multiple carbon—carbon bonds in conjugation and therefore absorb UV light in the range $\lambda = 300$ —400 nm. UVD of β -carotene is often at $\lambda \approx 450$ nm. Retinol and its esters display a pale green fluorescence when excited with near-UV light. The wavelength of excitation maxima is in the range $\lambda = 325$ —335 nm and that of emission maxima in the range $\lambda = 470$ —490 nm is only to some degree dependent on the solvent while the quantum yield is highly affected [24].

For the detection of vitamin D compounds either UV detection at $\lambda \approx 265$ nm [20, 76, etc.] or electrochemical detection is used [18, 50]; RP chromatography is mainly used. In case of vitamin D compounds, RP chromatography with UVD allows the use of vitamin D₂ as an internal standard for vitamin D₃ [15, 20]. Vitamin D₃ can be quantified at the same time after the fraction containing vitamins D₂ and D₃ is separated for example in the SPE step.

Even though normal-phase HPLC is not so robust as reversed-phase chromatography and it is not always sufficiently versatile for routine analysis, most reversed-phase systems are not able to separate the β - and γ -isomers of tocopherols and tocotrienols [21]. All four tocopherols and tocotrienols can be separated and quantified by normal-phase chromatography with silica stationary phases and FLD [15, 21]. Normalphase systems are only suitable for the direct analysis of cooking oils and fats, since a polar normal-phase eluents are good solvents for these samples [22]. UVD at $\lambda \approx 280-290$ nm or FLD is used for detection of to copherols.

ECD of vitamin K can be performed after reduction on platinum catalyst [23] or using dual electrochemical detector [77], fluorescence detection after reduction on platinum catalyst [52] or zinc catalyst [78]. UVD is not frequently used; wavelength 280 nm is used in paper [70] for evaluation of vitamin K_1 in milk. Paper [23] recommends preferably to use ECD due to its higher sensitivity and selectivity in comparison with FLD or UVD.

Further information about HPLC quantification and also sample preparation can be found in Tables 1 and 2, which provides brief view of developed and published methods.

6. CONCLUSION

This paper shows that analytical evaluation of vitamins is continually living topic. Although there is on-going progress in analytical chemistry, the chromatographic determination of vitamins in biosamples still belongs among the most challenging tasks due to the complexity of sample matrices, low concentrations of vitamins, and low stability of some of them. There is not universal method for determination of WSV or FSV in all sample matrices; for each sample or group of samples a new or at least slightly modified current method should be developed, to be selective, robust, and accurate for given case. Careful optimization of extraction conditions and separation, and selection of suitable detection are basics of success.

For simultaneous quantification of several WSV in multivitamin (pharmaceutical) preparations methods described in papers [59, 60] can be recommended, because they reach ≈ 100 % recovery for all quantified vitamins. Simultaneous quantification of vitamins A and E can be successfully performed using methods [44] or [64], because they also demonstrated recoveries ≈ 100 %. Paper [64] deals also with vitamin D₃ determination, however, the recovery for this vitamin was found about 78 %. On the other hand, it should be mentioned that quantitative vitamin D analysis can represent a complex problem.

In case of more complex matrices, authors in their work are usually interested in quantification of one or a small number of vitamins in order to develop an accurate method. As an example of accurate method, where several WSV in complex matrices are quantified, can serve paper [2]. Reached recoveries of individual vitamins were higher than 95 %. Other works, for example [66, 25], which also simultaneously quantify number of WSV showed lower recoveries. Recoveries of methods [70] and [3], for simultaneous FSV quantification, were about 89—107 % and 89—100 %, respectively. Acknowledgements. The paper was supported by the Charles University, Research Project MSM 111600001.

REFERENCES

- Viñas, P., López-Erroz, C., Balsalobre, N., and Hernández-Córdoba, M., J. Chromatogr., B: Biomed. Appl. 757, 301 (2001).
- Viñas, P., López-Erroz, C., Balsalobre, N., and Hernández-Córdoba, M., J. Chromatogr., A 1007, 77 (2003).
- Gomis, D. B., Arias, V. J. E., Alvarez, L. E. F., and Alvarez, M. D. G., *J. Chromatogr.*, *B: Biomed. Appl.* 660, 49 (1994).
- Kall, M. A. and Andersen, C., J. Chromatogr., B: Biomed. Appl. 730, 101 (1999).
- Sharpless, K. E., Margolis, S., and Thomas, J. B., J. Chromatogr., A 881, 171 (2000).
- Gliszezyńska-Świglo, A. and Koziolowa, A., J. Chromatogr., A 881, 285 (2000).
- Rose-Sallin, C., Blake, C. J., Genoud, D., and Tagliaferri, E. G., Food Chem. 73, 473 (2001).
- Gonthier, A., Fayol, V., Viollet, J., and Hartmann, D. J., *Food Chem.* 63, 287 (1998).
- Woollard, D. C., Indyk, H. E., and Christiansen, S. K., Food Chem. 69, 201 (2000).
- 10. Argoudelis, C. J., J. Chromatogr., A 790, 83 (1997).
- Jastrebova, J., Witthöft, C., Grahn, A., Svensson, U., and Jägerstad, M., Food Chem. 80, 579 (2003).
- Kall, M. A., Nørgaard, P., Pedersen, J., and Leth, T., J. Pharm. Biomed. Anal. 23, 437 (2000).
- Li, H. B., Chen, F., and Jiang, Y., J. Chromatogr., A 891, 243 (2000).
- Baker, S. A., Miller-Ihli, N. J., Spectrochim. Acta, Part B 55, 1823 (2000).
- Salo-Väänänen, P., Ollilainen, V., Mattila, P., Lehikoinen, K., Salmela-Mölsä, E., and Piironen, V., Food Chem. 71, 535 (2000).
- Mendoza, B. R., Pons, S. M., Bargalló, A. I. C., and López-Sabater, M. C., *J. Chromatogr.*, A 1018, 197 (2003).
- Miyagi, M., Yokoyama, H., Shiraishi, H., Matsumoto, M., and Ishii, H., J. Chromatogr., B: Biomed. Appl. 757, 365 (2001).
- Masuda, S., Okano, T., Kamao, M., Kaneda, Y., and Kobayashi, T., *J. Pharm. Biomed. Anal.* 15, 1497 (1997).
- Shimada, K., Mitamura, K., Kitama, N., and Kawasaki, M., J. Chromatogr., B: Biomed. Appl. 689, 409 (1997).
- Mattila, P., Piironen, V., Uusi-Rauva, E., and Koivistoinen, P., J. Food Compos. Anal. 6, 250 (1993).
- Kamal-Eldin, A., Görgen, S., Pettersson, J., and Lampi, A. M., J. Chromatogr., A 881, 217 (2000).
- Sánchez-Pérez, A., Delgado-Zamarreño, M. M., Bustamante-Rangel, M., and Hernández-Méndez, J., J. Chromatogr., A 881, 229 (2000).
- Wakabayashi, H., Onodera, K., Yamato, S., and Shimada, K., Nutrition 19, 661 (2003).
- Gundersen, T. E. and Blomhoff, R., J. Chromatogr., A 935, 13 (2001).
- Albalá-Hurtado, S., Veciana-Nugués, M. T., Izquierdo-Pulido, M., and Mariné-Font, A., J. Chromatogr., A 778, 247 (1997).

- Andrés-Lacueva, C., Mattivi, F., and Tonon, D., J. Chromatogr., A 823, 355 (1998).
- Mattivi, F., Monetti, A., Vrhovšek, U., Tonon, D., and Andrés-Lacueva, C., J. Chromatogr., A 888, 121 (2000).
- 28. Yuan, J. P. and Chen, F., Food Chem. 64, 423 (1999).
- Gimeno, E., Calero, E., Castellote, A. I., Lamuela-Raventós, R. M., de la Torre, M. C., and López-Sabater, M. C., J. Chromatogr., A 881, 255 (2000).
- Scalia, S., Renda, A., Ruberto, G., Bonina, F., and Menegatti, E., *J. Pharm. Biomed. Anal.* 13, 273 (1995).
- Gimeno, E., Castellote, A. I., Lamuela-Raventós, R. M., de la Torre, M. C., and López-Sabater, M. C., J. Chromatogr., A 881, 251 (2000).
- 32. Iwase, H. and Ono, I., J. Chromatogr., A 806, 361 (1998).
- Gibbons, E., Allwood, M. C., Neal, T., and Hardy, G., J. Pharm. Biomed. Anal. 25, 605 (2001).
- Allwood, M. C. and Kearney, M. C. J., Nutrition 14, 697 (1998).
- 35. Iwase, H., J. Chromatogr., A 881, 317 (2000).
- 36. Yagi, K., Methods Biochem. Anal. 10, 319 (1961).
- Esteve, M. J., Farré, R., Frigola, A., and Garcia-Cantabella, J. M., J. Chromatogr., A 795, 383 (1998).
- Bognar, A. and Ollilainen, V., Z. Lebensm. Unters. Forsch., A 204, 327 (1997).
- 39. Kall, M. A., Food Chem. 82, 315 (2003).
- 40. Wongyai, S., J. Chromatogr., A 870, 217 (2000).
- Akhtar, M. J., Khan, M. A., and Ahmad, I., J. Pharm. Biomed. Anal. 16, 95 (1997).
- Akhtar, M. J., Khan, M. A., and Ahmad, I., J. Pharm. Biomed. Anal. 25, 269 (1999).
- Gatti, R., Gioia, M. G., Di Pietra, A. M., and Cini, M., J. Chromatogr., A 905, 345 (2001).
- 44. Gatti, R., Gioia, M. G., and Cavrini, V., J. Pharm. Biomed. Anal. 23, 147 (2000).
- Strobel, M., Heinrich, F., and Biesalski, H. K., J. Chromatogr., A 898, 179 (2000).
- 46. Oliver, J. and Palou, A., J. Chromatogr., A 881, 543 (2000).
- Mattila, P., Ronkainen, R., Lehikoinen, K., and Piironen, V., J. Food Compos. Anal. 12, 153 (1999).
- 48. Kilcast, D., Food Chem. 49, 157 (1994).
- Bolin, H. R., in Handbook of Nutritive Value of Processed Food. Vol. I. Food for Human Use, p. 310. CRC Press, Boca Raton, FL, 1982.
- Zamarreño, M. M. D., Perez, A. S., Rodriguez, M. S., Perez, M. C. G., and Mendez, J. H., *Talanta* 43, 1555 (1996).
- Cooper, J. D. H., Thadwal, R., and Cooper, M. J., J. Chromatogr., B: Biomed. Appl. 690, 355 (1997).
- 52. Iwase, H., J. Chromatogr., A 881, 261 (2000).
- Ferland, G. and Sadowski, J. A., J. Agric. Food Chem. 40, 1869 (1992).
- Koshiishi, I., Mamura, Y., and Imanari, T., J. Chromatogr., A 806, 340 (1998).

- Volotovsky, V. and Kim, N., Anal. Chim. Acta 359, 143 (1998).
- Esteve, M. J., Farré, R., Frigola, A., and Garcia-Cantabella, J. M., J. Chromatogr., B: Biomed. Appl. 688, 345 (1997).
- 57. Gökmen, V., Kahraman, N., Demir, N., and Acar, J., J. Chromatogr., A 881, 309 (2000).
- Dinç, E., Kökdil, G., and Onur, F., J. Pharm. Biomed. Anal. 22, 915 (2000).
- Höller, U., Brodhag, C., Knöbel, A., Hofmann, P., and Spitzer, V., J. Pharm. Biomed. Anal. 31, 151 (2003).
- Ivanović, D., Popović, A., Radulović, D., and Medenica, M., J. Pharm. Biomed. Anal. 18, 999 (1999).
- Osseyi, E. S., Wehling, R. L., and Albrecht, J. A., J. Chromatogr., A 826, 235 (1998).
- Andrisano, V., Bartolini, M., Bertucci, C., Cavrini, V., Luppi, B., and Cerchiara, C., J. Pharm. Biomed. Anal. 32, 983 (2003).
- Sweeney, M. R., McPartlin, J., Weir, D. G., and Scott, J. M., J. Chromatogr., B: Biomed. Appl. 788, 187 (2003).
- Moreno, P. and Salvadó, V., J. Chromatogr., A 870, 207 (2000).
- 65. Breithaupt, D. E., Food Chem. 74, 521 (2001).
- Cho, C. M., Ko, J. H., and Cheong, W. J., *Talanta* 51, 799 (2000).
- Paulo, M. G., Marques, H. M. C., Morais, J. A. G., and Almeida, A. J., *J. Pharm. Biomed. Anal.* 21, 399 (1999).
- Albalá-Hurtado, S., Novella-Rodríguez, S., Veciana-Nugués, M. T., and Mariné-Font, A., J. Chromatogr., A 778, 243 (1997).
- Ake, M., Fabre, H., Malan, A. K., and Mandrou, B., J. Chromatogr., A 826, 183 (1998).
- Gomis, D. B., Fernández, M. P., and Alvarez, M. D. G., J. Chromatogr., A 891, 109 (2000).
- Escrivá, A., Esteve, M. J., Farré, R., and Frígola, A., J. Chromatogr., A 947, 313 (2002).
- 72. Iwase, H., Anal. Chim. Acta 463, 21 (2002).
- 73. Iwase, H., J. Chromatogr., A 1008, 81 (2003).
- 74. Alvarez, J. C. and De Mazancourt, P., J. Chromatogr., B: Biomed. Appl. 755, 129 (2001).
- Richelle, M., Tavazzi, I., and Fay, L. B., J. Chromatogr., B: Biomed. Appl. 794, 1 (2003).
- 76. Iwase, H., J. Chromatogr., A 881, 189 (2000).
- 77. Koivu, T., Piironen, V., Lampi, A. M., and Mattila, P., Food Chem. 64, 411 (1999).
- Majchrzak, D. and Elmadfa, I., Food Chem. 74, 275 (2001).
- 79. Iwase, H., J. Chromatogr., A 881, 243 (2000).
- Qian, H. and Sheng, M., J. Chromatogr., A 825, 127 (1998).
- Po, E. S. M., Ho, J. W., and Gong, B. Y., J. Biochem. Biophys. Methods. 34, 99 (1997).