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Numerical solution of Hill’s variational principles is presented for the estimation of upper and
lower bounds to the drag coefficient correction function necessary for the determination of terminal
velocity of spherical particles falling in purely viscous fluids obeying the four-parameter Carreau
viscosity model. Some calculated data of the drag coefficient correction functions are compared with
the corresponding experimental data. In the experiments, terminal falling velocities of spheres in
aqueous solutions of polyalkylene glycol Emkarox HV 45 doped with a small amount (0.06 mass %
and 0.08 mass %) of polyacrylamide Praestol 2935 were measured. At the same time, viscosity
function measurements and oscillation dynamic tests of liquids were performed using rheometer RS
150 (Haake).
It was found that due to the liquid elasticity the experimental values Xexp of the drag coefficient
correction function are beyond the calculated interval of upper and lower bounds and are higher than
the upper bound Xu. However, terminal velocities of spheres falling in the test fluids with similar
properties can be roughly estimated using the upper bound Xu for determination of a sphere drag
coefficient.

Understanding the motion of particles falling in
non-Newtonian fluids is not only of fundamental the-
oretical interest, but it is also of importance in many
practical applications and industrial processes such as
falling-ball viscometry, transport of slurries, sedimen-
tation, fluidization, etc.
Therefore, great effort has been paid to investiga-

tion of the motion of spheres through non-Newtonian
fluids over the last decades. At the same time, the
fluid viscosity models containing zero shear viscosity
should be preferred for describing the flow of purely
viscous fluids around a sphere [1]. Such a widely used
viscosity model (especially for polymeric liquids) is,
for example, the Carreau model

η = η∞ + (η0 − η∞)
[
1 + (λγ̇)2

]m−1
2

(1)

The creeping motion of spheres through a Carreau
model fluid has been solved, for example, in the works
[2—6]. Based on the Hill’s variational principles, a
problem for the numerical estimation of the upper and
lower bounds to the drag coefficient correction func-
tion for the fall of spherical particles in fluids obeying

the Carreau viscosity model (1) was formulated in [5,
6]. The problem has been only solved for the dimen-
sionless viscosity parameter

ηr =
η0 − η∞
η0

(2)

encompassing the interval 1 ≥ ηr ≥ 0.96. Here
the Carreau model parameters η0 and η∞ represent
zero shear rate and infinity shear rate viscosities. Al-
though for the creeping flow of a Carreau fluid usu-
ally ηr ≈ 1, this quantity can acquire also lower val-
ues for some polymeric fluids. Therefore, the above-
mentioned problem was recalculated extending the so-
lution of Hill’s variational principles for the interval
1 ≥ ηr ≥ 0.5.
In this contribution, the obtained dependences of

the upper bound Xu and the lower bound Xl on the di-
mensionless time parameter Λ and the Carreau model
parameter m for selected values of ηr are presented.
Some calculated data are compared with the corre-
sponding experimental data Xexp, which were eval-
uated from measurements of terminal falling veloc-
ity of spherical particles moving in aqueous solutions
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of polyalkylene glycol Emkarox HV 45 doped with a
small amount of polyacrylamide Praestol 2935 under
creeping flow conditions. These polymeric fluids sat-
isfy the Carreau viscosity equation (1) and at the same
time the value of parameter η∞ is not negligible in
comparison with η0.

THEORETICAL

Let us consider the free fall of a solid spherical par-
ticle in an unbounded purely viscous fluid the viscosity
function of which is approximated by the Carreau vis-
cosity model. Supposing the creeping flow conditions,
the problem is described by the following set of equa-
tions:
continuity equation

∇ · �u = 0 (3)

motion equation

∇p+∇ · ��τ − ρ�g = �0 (4)

and constitutive equation

��τ = −2η��̇γ (5)

The non-Newtonian viscosity η = η(II ) is the func-
tion of the second invariant of the rate of deformation
tensor defined as

II =

√
��̇γ : ��̇γ (6)

For the Carreau model liquid one gets

η = η∞ + (η0 − η∞) (1 + 2λ2II2)
m−1
2 (7)

In spherical coordinates (r, θ, ϕ), the dependent
variables are the velocity components ur, uθ and the
pressure p. The corresponding boundary conditions
are given as

for r = R ur = uθ = 0 (8)

for r → ∞ ur = ut cos θ (9)

uθ = −ut sin θ
where R is the radius of the sphere, ut is the terminal
falling velocity.
The magnitude Fd of the drag force is obtained by

integration of stresses acting on the sphere surface. It
can be also expressed using the drag coefficient as

Fd = cDπR2(1/2)ρu2t (10)

At the same time, the drag coefficient for the flow
of Carreau liquid around a sphere is given by

cD =
24
Re0

X (11)

where the Reynolds number

Re0 =
2Rut ρ
η0

(12)

and X is the drag coefficient correction function.
The mathematical model given by eqns (3)—(12)

can be approximately solved if it is replaced by an
equivalent variational problem [7]. Following the de-
velopment of Slattery for an Ellis model fluid [8], such
variational problem, based on Hill’s variational prin-
ciples, has also been formulated for a Carreau model
fluid [5, 6]. Solving this variational problem, the up-
per bound Xu and the lower bound Xl to the drag
coefficient correction function X can be estimated.

Upper Bound to the Drag Coefficient Correc-
tion Function

Using the first (velocity) variational principle, the
following relation has been derived for the correction
function X [5]

X =
2
3

1∫
0

1∫
−1

ηbII
2
bx

−4dydx ≤

≤ 2
3

1∫
0

1∫
−1

Ebx
−4dydx =

2
3
Fub (13)

Here

x = R/r (14a)

y = cos θ (14b)

are the dimensionless spherical coordinates,

Eb =
ER2

η0u2t
= (1− ηr) II2b +

+
ηr

Λ2(1 +m)

[
(1 + 2Λ2II2b)

m+1
2 − 1

]
(15)

is the dimensionless function E, which is for the Car-
reau liquid given as

E(II) =

II2∫
0

η(II2)dII2 = η∞II2 +

+
η0 − η∞
λ2(1 +m)

[
(1 + 2λ2II2)

m+1
2 − 1

]
(16)

ηb =
η

η0
(17)

Λ =
λut
R

(18)
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are the dimensionless viscosity and dimensionless time
parameters,

IIb =
IIR

ut
= (19)

=

{
3
2
x4

[
y2

(
df
dx

)2
+
1
12
x2

(
1− y2

) (
d2f
dx2

)2]} 1
2

is the dimensionless second invariant of the rate of
deformation tensor.
In order to express the invariant IIb, a trial ve-

locity distribution must be specified that satisfies the
continuity eqn (3) and the boundary conditions (8)
and (9). The continuity equation will be fulfilled, if
the nonzero velocity components are written in terms
of stream function

ur = − 1
r2 sin θ

∂ψ

∂θ
(20)

uθ =
1

r sin θ
∂ψ

∂r
(21)

At the same time, the stream function can be ex-
pressed by the following relationship

ψ = −1
2
ut r

2 sin2 θf(x) (22)

In this study the calculations were performed using
the function

f(x) = 1− 3
2
xa +

1
2
x3a (23)

In this case

(
df
dx

)
x=1

= 0, f(1) = 0, f(0) = 1, and

lim
x→0

x
df
dx
= 0 so that also the boundary conditions

are fulfilled. At the same time, if a = 1, the velocity
distribution corresponds with Stokes solutions for the
creeping flow of a Newtonian fluid past a sphere.
The optimum value of the parameter a in the func-

tion f (x) can be determined by the minimization of the
functional Fub. The estimation of the upper bound Xu
to the correction function X = X(m,Λ, ηr) then fol-
lows from the relation (13).

Lower Bound to the Drag Coefficient Correc-
tion Function

According to the second (stress) variational prin-
ciple, the following relation is valid [5]

X ≥ 1 +m
3

1∫
0

1∫
−1

Ebx
−4dydx ≥ 1 +m

3
Flb (24)

The functional Flb is given by the relationship

Flb = −
1∫
0

1∫
−1

Ecbx
−4dydx+ 2B (25)

where the function

Ecb = 2ηbII2b − Eb (26)

can be determined by solving the equation

IIτb = 2ηbIIb (27)

Here IIτb is the dimensionless second invariant of
the extra stress tensor. In order to express this invari-
ant, a trial stress distribution that satisfies the motion
eqn (4) must be specified. Using the following approx-
imations of the extra stress tensor components [5, 8]

τrθ = B
η0ut
R

x4 sin θ (28)

τθθ = τϕϕ = −1
2
τrr = B

η0ut
R
(x2 − x4) cos θ (29)

one gets

IIτb = B
{
2x4

[
x4

(
1− y2

)
+ 3

(
1− x2

)2
y2

]} 1
2

(30)
The optimum value of the parameter B can be de-

termined by the maximization of the functional Flb.
The estimation of the lower bound Xl to the correction
function X then follows from the relation (24).

Solution Procedure

For numerical calculations of the upper bound Xu
and the lower bound Xl special programs were com-
piled in Turbo Pascal. The calculations were per-
formed for the varying values of quantities m, Λ, and
ηr encompassing the intervals 0.3 ≤ m ≤ 1 (with the
step of 0.1), 0.1 ≤ Λ. ≤ 2000, and 0.5 ≤ ηr ≤ 1 (with
the step of 0.05).
The upper bound Xu was determined by minimiza-

tion of the functional Fub (eqn (13)) using the golden
section method. The minimization was stopped when
the relative deviation of the functional values at the
end points of the varying interval of parameter a was
lower than 0.5 %. The double integral included in eqn
(13) (evaluated for each value of the parameter a)
was calculated making use of the four-point Gauss for-
mula. The quantity Eb, needed for the calculation of
the integral, is given by eqn (15) as a function of IIb
(eqns (19) and (23)).
The lower bound Xl was determined by maximiza-

tion of the functional Flb (eqn (25)). The procedures
used for the optimization of parameter B and the dou-
ble integral calculation were the same as in the case of
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Table 1. Characteristics of the Test Liquids

Carreau model parameters
Symbol Liquid Density

ρ/(kg m−3) η0/(Pa s) η∞ /(Pa s) λ/s m ηr

L1 25 % Emkarox, 0.06 % Praestol 1043 1.00 0.21 3.6 0.442 0.790
L2 25 % Emkarox, 0.08 % Praestol 1043 1.65 0.27 5.5 0.432 0.836

Fig. 1. Example of the flow curve (�) and viscosity function
( ) courses for the liquid L2.

the upper bound estimation. The necessary quantity
Ecb is given by eqn (26) as a function of IIb. The value
of IIb was determined by the solution of the nonlin-
ear eqn (27) using the Newton method. The iterations
were stopped when the relative deviation of the two
consecutive values of IIb was lower than 0.1 %.

EXPERIMENTAL

The experiments were directed to estimate the ter-
minal falling velocities of spheres in aqueous solutions
of polyalkylene glycol Emkarox HV 45 doped with a
small amount (0.06 mass % and 0.08 mass %) of poly-
acrylamide Praestol 2935.
The test liquids were prepared by dissolving the

corresponding amount of Praestol in 25 % aqueous so-
lution of Emkarox HV 45. The viscosity measurements
and the oscillation dynamic tests of liquids were car-
ried out on rheometer RS 150 (Haake). The viscosity
function courses were approximated by the Carreau
model (1). The resulting values of model parameters
of the liquids used are given in Table 1. An example of
the flow and viscosity curves for the liquid L2 is shown
in Fig. 1. In oscillatory tests, the comparable values of
storage modulus G′ and loss modulus G′′ were found
for both the liquids L1 and L2 as shown in Fig. 2. It
suggests evident elasticity of the test liquids.
Seven types of glass spheres were used for drop

tests. The diameter of spheres was measured with

Table 2. Characteristics of the Spherical Particles Used

Symbol Diameter, d/mm Density, ρs/(kg m−3)

S1 1.46 ± 0.025 2464 ± 1.5
S2 1.89 ± 0.045 2506 ± 1.6
S3 2.50 ± 0.051 2516 ± 3.5
S4 2.79 ± 0.035 2515 ± 3.1
S5 3.13 ± 0.036 2463 ± 8.2
S6 3.95 ± 0.049 2490 ± 2.0
S7 4.92 ± 0.071 2514 ± 3.7

Fig. 2. Storage, G′ (full symbols), and loss, G′′ (empty sym-
bols), moduli vs. angular velocity: liquid L1 (�) and
liquid L2 (◦).

a micrometer. An average of twenty sphere mea-
surements was used as the diameter. The density of
spheres was measured using a pycnometer. Charac-
teristics of the spheres used are given in Table 2.
Wall effects were accounted for by dropping each

sphere in three Perspex columns of 20 mm, 40 mm,
and 80 mm in diameter and about 0.8 m in length. The
test section was situated nearly 0.2 m away from the
top and bottom ends of the tube. The stopwatch read-
ing to 0.01 s was used for timing the spheres. The tim-
ing was repeated 10 times for each type of spheres. The
range of sphere velocities encountered in these mea-
surements was from 1.32 mm s−1 to 28.2 mm s−1. Cor-
responding intervals of Reynolds number and dimen-
sionless time parameter were 0.002 ≤ ReCt ≤ 0.420
(creeping flow region) and 10 ≤ Λ. ≤ 41.
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RESULTS AND DISCUSSION

Examples of the results of numerical calculations
of upper and lower bounds to correction function X
are given in Figs. 3—5 for ηr = 1.0, 0.8, and 0.6,
respectively. The pseudoplasticity of a Carreau fluid
increases with the increasing value of the model pa-
rameter λ and the decreasing value of parameter m.
Accordingly, the values of Xu and Xl decrease as well
with the increasing Λ and decreasing m for a given
value of viscosity parameter ηr. At the same time, the
pseudoplasticity of a Carreau fluid goes down with de-
creasing ηr. Therefore, the smallest values of Xu and
Xl for given Λ and m were obtained for ηr = 1 and
they increase with the decreasing ηr. Concerning the
upper bound, Xu → 1 for Λ → 0 and any m and ηr.
It corresponds with Newtonian behaviour of the fluid
at this condition. On the other hand, the lower bound
Xl → 2/(1 +m) for Λ → 0. Therefore, for low values
of Λ the more realistic estimation of the function X
seems to be its upper bound Xu.
The results of the numerical calculations of the

function X were compared with the experimental data
Xexp calculated from the relationship

Xexp =
gd2(ρs − ρ)
18 η0ut

(31)

which follows for

Fd =
4
3
πR3(ρs − ρ)g (32)

from eqns (10)—(12).
The values of ut were determined for the fall of

spheres S1—S7 in both test liquids L1 and L2 by lin-
ear extrapolation of the dependences of experimental
values ut,exp on the ratio d/D to d/D = 0. The results
are summarized along with the resulting values ofXexp
in Table 3. At the same time, each value of ut,exp rep-
resents an average of ten measurements. Measurement
error does not exceed 3 % in this case.
In Table 3 are given also the corresponding values

of upper and lower bounds to X, which were calculated
for the values of ηr, m, and Λ characterizing the test
liquids L1 and L2. It is evident that, unlike the ex-
periments carried out in the presence of diluted aque-
ous solutions of only one polymer in which settling is
dominated by the viscosity and viscoelastic influence
is relatively small [5, 9], the values of Xexp are beyond
the calculated interval of Xu and Xl being even higher
than the upper bound Xu. At the same time, contrary
to expectations, the value of Xexp (proportional to the
drag coefficient) does not evidently decrease with the
increasing value of Λ. Therefore, the magnitude of rel-
ative deviation δu = (Xu −Xexp)/Xexp between Xexp
and Xu (Table 3) increases with increasing Λ. The ob-
served drag enhancement relative to a purely viscous

Fig. 3. Calculated values of the upper (solid line) and lower
(dashed line) bounds to correction function X as a func-
tion of dimensionless time Λ and parameter m for ηr =
1.

Fig. 4. Calculated values of the upper (solid line) and lower
(dashed line) bounds to correction function X as a func-
tion of dimensionless time Λ and parameter m for ηr =
0.8.

Fig. 5. Calculated values of the upper (solid line) and lower
(dashed line) bounds to correction function X as a func-
tion of dimensionless time Λ and parameter m for ηr =
0.6.
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Table 3. Comparison of Experimental Values Xexp of Drag Coefficient Correction Function with Calculated Data of its Upper,
Xu, and Lower, Xl, Bound

L1, ηr = 0.79, m = 0.442 L2, ηr = 0.84, m = 0.432
Sphere

ut/(mm s−1) Λexp Xexp Xu Xl δu/% ut/(mm s−1) Λexp Xexp Xu Xl δu/%

S1 2.08 10 0.793 0.739 0.517 −6.8 1.32 10 0.758 0.712 0.529 −6.0
S2 3.86 15 0.737 0.676 0.471 −8.3 2.54 15 0.679 0.640 0.441 −5.4
S3 6.48 18 0.770 0.649 0.452 −15.7 4.03 18 0.751 0.613 0.420 −18.4
S4 8.33 21 0.747 0.626 0.436 −16.2 5.18 20 0.729 0.596 0.408 −18.2
S5 10.4 24 0.728 0.607 0.423 −16.6 6.21 22 0.740 0.581 0.398 −21.5
S6 16.8 30 0.732 0.577 0.401 −21.2 10.4 29 0.718 0.540 0.369 −24.7
S7 28.2 41 0.688 0.537 0.374 −22.0 15.9 35 0.740 0.514 0.351 −30.6

Fig. 6. Comparison of experimental terminal falling velocity
data with those calculated according to eqns (31) and
(33): liquid L1 (�) and liquid L2 ( ).

fluid will be apparently caused by intensified elastic ef-
fects at elevated dimensionless time Λ, as in the case
of particles fall in Boger fluids (e.g. [10]).
It is evident that prediction of terminal falling ve-

locity of spheres in test fluids is approximate only.
The corresponding value of ut is determined by eqn
(31) substituting the upper bound Xu for Xexp. To
do so, the dependences Xu = Xu(ηr, m, Λ), calcu-
lated in this work (see Figs. 3—5), were approximated
(mean relative deviation δu = 2.1 %) for the interval
0.5 ≤ ηr ≤ 0.95 by the relationship

Xu =
[
1 + k1(1−m)Λ2

]k2(1−m)k3
(33)

where

k1 = 2.6− 2.25ηr (34a)

k2 = −0.21 + 0.66ηr − 0.71η2r (34b)

k3 = 0.054 + 0.54ηr (34c)

Goodness of the fit of experimental terminal veloc-
ities by eqns (31) and (33) is shown in Fig. 6 for the
test liquids L1 and L2.

The values of the relative deviations of experimen-
tal, ut,exp, and calculated data, ut,c, range from −12 %
to −59 %. At the same time, in accordance with exper-
imental values of Xexp, the magnitude of the deviation
increases with increasing ut.
It should be noted that due to the lack of terminal

falling velocity experimental data for Carreau model
liquids with ηr < 0.96 in the literature, the results ob-
tained in this work could not be compared with those
of other authors. For more comprehensive examination
of the applicability of our numerical results for ter-
minal falling velocity prediction, further experiments
will be necessary in the wider intervals of parameters
m and Λ.
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SYMBOLS

a stream function parameter, eqn (23)
B shear stress function parameter, eqns (28),

(29)
cD sphere drag coefficient
d sphere diameter m
D test column diameter m
E function defined by eqn (16) Pa s−1

Ec function defined in dimensionless form by
eqn (26) Pa s−1

F functionals, eqns (13), (25)
Fd drag force magnitude N
g gravity acceleration m s−2

m Carreau model parameter
R sphere radius m
p pressure Pa
r radial spherical coordinate m
Re0 Reynolds number defined by eqn (12)
ReCt Reynolds number based on the Carreu

model viscosity for γ̇ = ut/d
x dimensionless radial spherical coordinate

defined by eqn (14a)
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X drag coefficient correction function defined
by eqn (11)

y dimensionless spherical coordinate defined
by eqn (14b)

ui velocity vector components m s−1

ut terminal falling velocity m s−1

δ relative deviation
η non-Newtonian viscosity Pa s
η0 Carreau model parameter (zero shear rate

viscosity) Pa s
ηr dimensionless viscosity parameter defined

by eqn (2)
η∞ Carreau model parameter (infinity shear

rate viscosity) Pa s
θ meridian spherical coordinate
λ Carreau model time parameter s
Λ dimensionless time parameter defined by

eqn (18)
ρ liquid density kg m−3

ρs sphere density kg m−3

γ̇ shear rate s−1
��̇γ shear rate tensor s−1

τ ij extra stress tensor components Pa
��τ extra stress tensor Pa
ψ stream function, eqn (22) m3 s−1

II second invariant of the shear rate tensor
defined by eqn (6) s−1

IIτ second invariant of the extra stress tensor
given in dimensionless form by eqn (27) Pa

Superscripts

→ vector quantity

Subscripts

b dimensionless quantity
c calculated
exp experimental value
i, j component
l lower bound
r related to the radial spherical coordinate
u upper bound
θ related to the meridian spherical coordina-

te
ϕ related to the parallel spherical coordinate
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