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This contribution deals with temperature stabilization of a continuous stirred tank reactor. Here,
the modified iterative scheme of system identification and control design is combined. Based on
identification, the feedback controller is designed, which stabilizes the reactor at an arbitrary set
point in spite of uncertainties in the kinetics. The iterative identification is based on the Youla—
Kucera parametrization. The main advantage of the used algorithm is that it is not necessary to
apply the reduction method during the identification as in the standard identification realized via
mentioned parametrization.

The literature contains a large number of papers
that discuss the design and control of chemical reac-
tors. Textbooks such as [1] and [2] present the funda-
mentals, but the emphasis is primarily on steady-state
aspects. These texts cover some topics in dynamics,
but most of the discussion is about stability and mul-
tiple steady states.
In the last ten years, there has been a great deal of

activity in the nonlinear feedback control and stabi-
lization of chemical reactors. Typical references among
others are [3—6]. The engineering motivation relies
on the fact that the reactor operation in states cor-
responds to an optimal process performance (like, for
instance, an optimum tradeoff between yield and pro-
ductivity). These states can lie near or at unstable
steady state.
Feedback control of chemical reactors is a problem,

which is made difficult by the inherent nonlinear na-
ture of the involved mechanism. One of the particular
control problems, which were most commonly investi-
gated, is the temperature regulation of an exothermic
irreversible reaction in a cooled continuously stirred
tank reactor (CSTR). The reaction and the reactor
considered in this paper are quite simple.
Here, a controller that guarantees temperature sta-

bilization in spite of strong uncertainties in the ki-
netic function with respect to the temperature is pro-
posed. Our control design is based on parametrization
of identified linear model of laboratory reactor. The
“classical” principles of identification can be found in
textbook as [7]. Of special interest is the situation
when the data to be used have been collected under
closed-loop operation.
A collection of recently developed controller design

methods founded on iterations of plant model identifi-
cation and controller design is presented in [8] and [9].
The main problem studied in these two survey papers
is how to obtain the optimal controller from model,
which optimally resembles the system in closed loop.
In this paper the iterative identification, based on

the Youla—Kucera parametrization, for control design
is used. The quality of each candidate estimated model
depends on its own controller and vice versa. The ma-
jor drawback of standard iterative scheme, based on
the Youla—Kucera parametrization, is that the or-
der of identified model is not simply tunable due to
the required reparametrization, i.e. application of a
reduction technique. The algorithm presented in this
contribution eliminated this drawback. Our modified
iterative scheme is composed of an optimal control
design method and a prediction error identification
technique.

SYSTEM DESCRIPTION
AND PROBLEM FORMULATION

System Configuration

The reactor (Fig. 1, liquid volume approximately
0.95 dm3) consists of a glass tube closed by two gas-
tight stainless steel lids. The glass coil 9 with heat
transfer area 0.065 m2 represents the cooling system
of reactor. Water has been used as a coolant. Two
peristaltic pumps 1, 2 meter both reactants (H2O2
and K2Cr2O7) and feed reactor near the mixer 5. The
reaction products are taken away by an overflow 10,
which also provides constant liquid volume. Products
are divided into gas 7 and liquid phases 8. The ther-

Chem. Pap. 57 (5)335—341 (2003) 335



CHEMICAL REACTOR

 

1 

2 
8 7 

3 

4 

9 

5 

10 

6 

 

Fig. 1. Laboratory reactor system.

mometer 6 protected from corrosion by polyethylene
shield measures the temperature in the reactor. The
temperatures of inlet 3 and outlet coolant 4 are also
measured. The pneumatic valve continuously controls
the coolant feed. In the reactor an exothermic reac-
tion, dissociation of hydrogen peroxide,

2H2O2
K2Cr2O7−−−−−−−−→ 2H2O + O2

takes place. The following material and energy bal-
ances give the mathematical model of CSTR

dcA
dt
=
1
V
(qAcAV − (qA + qB)cA)− 2ν(cA, cB, ϑ) (1)

dϑ
dt
=
1

Cpρ
(−∆H)2ν(cA, cB, ϑ) +

qA + qB
V

(ϑV − ϑ)−

− Aα

CpV ρ
(ϑ − ϑCH)− ksAα

CpV ρ
(ϑ − ϑout) (2)

dϑCH
dt

=
qCH
VCH
(ϑCHV − ϑCH)+

+
Aα

CpCHVCHρCH
(ϑ − ϑCH) (3)

where

ν(cA, cB, ϑ) = kcz1
A cz2
B e

E(ϑ−ϑ0)
Rϑϑ0

and
cB =

cBVqB
qA + qB

The detailed information about this reactor can be
found in [10].

Problem Formulation

Consider now that the task is to identify the simple
model of plant G0, shown in Fig. 2, that is stabilized

C(s)   G0(s)
r(t) u(t)

y(t)

d(t)

_

e(t)

Fig. 2. Closed-loop configuration. e – control error, - negative
feedback.

by the controller C. Here, u(t) and y(t) are measur-
able input and output signals, respectively. The sys-
tem with negative feedback is driven by the reference
signal (set-point) r(t) and additive output noise d(t).
The procedure presented here is based on the idea

that in each step a control-relevant model is estimated
and subsequently, if the controller performance is not
satisfactory, a new controller is designed. It is assumed
that the initial controller, the controller that is used
in the first estimation, is available which stabilizes the
laboratory reactor but otherwise shows unsatisfactory
performance (e.g. excessive overshoot, rise-time not
small enough, etc.). The goal is to systematically im-
prove the controller performances.
In our case, the continuous stirred tank reactor,

shown in Fig. 1, represents the plant. The measurable
input signal u(t) is given by the rate of coolant qCH
and y(t) is equal to temperature of reactant mixture
ϑ. The notation and the problem setup of [11] is used
through this paper.

Assumption 1
Assume that the controller

C(s) =
Q(s)
P (s)

(4)

with coprime factors P (s) =
p(s)

m2(s)
and Q(s) =

q(s)
m2(s)

from Rps is known and stabilizes the plant

G0(s)

G0(s) =
B0(s)
A0(s)

(5)

with coprime elements A0(s) =
a0(s)
m1(s)

, B0(s) =

b0(s)
m1(s)

from Rps, and consider the nominal (auxiliary)

model GN(s) that is stabilized by C.

GN(s) =
BN(s)
AN(s)

(6)

where AN(s) =
aN(s)
m1(s)

and BN(s) =
bN(s)
m1(s)

are par-

ticular solutions of the following Bezout identity

ANP +BNQ = 1 (7)
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In eqns (4—6) the parameters a0(s), b0(s), aN(s),
bN(s), p(s), q(s), m1(s), m2(s) are polynomials and
s is operator of a Laplace transformation. Rps denotes
the set of stable proper rational functions. Assumption
1 expresses both the fact that the factors AN, BN, P ,
and Q are coprime and that the feedback loop formed
by the nominal modelGN and controllerC is internally
stable [12]. If the actual controller C is a stabilizing
controller for the plant G0 (see Assumption 1), there
exists a unit U from Rps, such that

A0P +B0Q = U =
m3m4
m1m2

(8)

where m3m4 = a0p+ b0q.

ITERATIVE IDENTIFICATION

Identification Based on the Youla—Kucera
Parametrization

In this section we will present the identification
method that is used for identification of a simple
model of unknown plant in closed-loop configuration
(see Fig. 2). Hansen and Franklin [13] introduce the
basic idea of the iterative identification based on a
dual Youla—Kucera parametrization. It was further
elaborated in [14] and modified for approximate iden-
tification in [15].

Theorem 1 [13]
Let Assumption 1 hold. Then the set of all possible

plant models for which the closed-loop system shown
in Fig. 2 remains internally stable is characterized as

G0 =
BN + PR

AN − QR
(9)

where the Youla—Kucera parameter R(s) =
nR(s)
dR(s)

is a stable proper rational function. Here nR(s) and
dR(s) are polynomials of R(s).
Theorem 1 represents the standard parametriza-

tion of the class of all plants that are stabilized by the
actual controller C(s). The idea of this approach is
to identify the parameter R(s) and then the transfer
function G0(s) is computed from eqn (9). For iden-
tification of R(s) auxiliary signals z(t) and x(t) are
utilized [15].

z(t) = ANy(t)− BNu(t)

x(t) = Qy(t)− Pu(t)
(10)

With respect to the mentioned auxiliary signals,
the parameter R(s) has the following form

z(t) = Rx(t) + d(t) (11)

This method is attractive, because identified plant
models are guaranteed to be stabilized by the present
controller [15]. On the other hand, during the identifi-
cation the complexity of identified model increases at
the end of each iteration, because the order of iden-
tified plant increases through the estimated Youla—
Kucera parameter [9]. This fact represents a serious
drawback of this approach if the controller with the
fixed structure is used. In that case, it is necessary to
identify also the model with fixed structure. This is
the reason why the model reduction algorithm must
be used. If the mentioned reduction is utilized, then
the structure of identified model is not changed at the
end of each iteration. Our idea here is to modify the
algorithm presented in [15], based on eqns (9—11) in
such a way that the model reduction step will be elim-
inated and structure of identified model will be fixed.

Modified Iterative Identification

The main idea of this modification is that the poly-
nomial nR (numerator of R(s)) is identified rather
than the parameter R(s). This polynomial is esti-
mated through the signals xF(t) and zF(t) which can
be calculated by filtering the measured data y(t) and
u(t) with filters F1 and F2 [11].

zF(t) = F1(ANy(t)− BNu(t))

xF(t) = F2(Pu(t) +Qy(t))

F1 =
m3m4
m2m2

F2 =
1

m1m2

(12)

Since it is not necessary to identify the denominator
of the Youla—Kucera parameter and with respect to
the filtered auxiliary signals the relation (11) can be
expressed as follows [11]

zF(t) = nRxF(t) + d(t) (13)

The plant model Ĝ0 = Ĝ0(nR) can be calculated
using the relation [11]

aNb̂0 − bNâ0 = nR = nR1s+ nR0 (14)

where â0, b̂0 are polynomials of the plant model Ĝ0 =
b̂0(s)
â0(s)

and nR1, nR0 are estimated coefficiens of poly-

nomial nR. The relation (14) shows that if the right
hand of this equation is the polynomial of constant
order and aN, bN are polynomials with constant or-
der, then computed polynomials â0, b̂0 of the plant

model Ĝ0 =
b̂0(s)
â0(s)

have also constant order. It means

that at the end of each iteration, the computed plant
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model has fixed structure and it is not necessary to
use reduction algorithm as in standard identification
based on the Youla—Kucera parametrization. More-
over, eqn (14) shows that if â0, b̂0 are the same as
aN, bN, then the right hand of this equation must be
a zero polynomial.
Consider that we have collected a data set {y(t),

u(t)} of the length N (see Fig. 2). Then the i-th itera-
tion of the modified iterative algorithm consists of the
following steps:
Step 1: Based on known Ci−1, GN,i−1, and

(m3m4)i−1 construct the stable filters F1,i, F2,i and
filtered auxiliary signals zF(t), xF(t) via eqn (12).
Step 2: Use the filtered auxiliary signals in

the least-squares identification algorithm, considering
zF(t) as output signal and xF(t) as input signal, and
identify the polynomial nR,i.
Step 3: Compute the new transfer function of the

identified model Ĝ0,i =
b̂0,i(s)
â0,i(s)

from eqn (14).

Step 4: Construct the polynomial (m3m4)i =
â0,ipi−1 + b̂0,iqi−1.
Step 5: Specify or calculate (m1m2)i and use re-

lations aN,i(s) = â0,i(s), bN,i(s) = b̂0,i(s).
Step 6: Design new controller Ci according to eqn

(7).
Step 7: Increase i, i = i + 1, and go to Step 1.
The iterations are finished when the coefficients of

identified polynomial nR,i reach the values close to
zero. Then the final controller (Step 6 of the last it-
eration) is applied to the true plant and, if it is nec-
essary, the new collection of data set {y(t), u(t)} to-
gether with new iterative identification is realized.

EXPERIMENTAL

The results from identification of laboratory con-
tinuous stirred tank reactor are presented. The esti-
mation of plant model was realized via modified iter-
ative identification proposed above. The total number
of estimations (collection of data sets) was three. Each
estimation consisted of 10 iterations.

First Estimation

For the first estimation the process was controlled
using an a priori designed LQ controller via lineariza-
tion technique of nonlinear model described by eqns
(1—3). Detailed information about controller design
can be found in [16]. This controller was tuned for the
set-point r = 303.15 K (30◦C). The goal of the itera-
tive design for this case is to compute the controller
with zero overshoot.
The process was excited by changing of set-point

from r = 303.15 K (30◦C) to r = 306.15 K (33◦C). For
control-relevant system identification to obtain poly-
nomial nR, the modified least-squares (LS) algorithm
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Fig. 3. Output responses to set-point change – the first esti-
mation, experimental (dotted), model (solid).
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Fig. 4. Input responses to set-point change – the first estima-
tion, experimental (dotted), model (solid).

was applied (see [17] and [18]). The model parameters
were recursively estimated in discrete time intervals
[19].
In the case of the first estimation the simulated

closed loop was given by controller C and nominal
model (obtained by linearization of nonlinear model)
GN. The same controller was applied on the laboratory
reactor. Comparison of both closed loops is shown in
Figs. 3 and 4, respectively.
Based on the presented responses we can say that

the simulated closed loop does not fit the experimental
one. Moreover, the coolant feed rate (simulated closed
loop) reached the low saturation limit during the sim-
ulation (see Fig. 4). The range for coolant feed rate
was between 0 and 2.33 cm3 s−1. Fig. 3 shows that
the designed controller applied to the laboratory reac-
tor has a poor performance. The overshoot was 16.6 %
and the time of stabilization was longer than 2000 s.
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Second Estimation

The collected experimental data, controller C, and
nominal model GN from the previous step were used
in the second estimation. In any iteration the polyno-
mial nR was estimated and using eqn (10) the new

plant model was computed. Based on the Ĝ0 =
b̂0(s)
â0(s)

the new controller C was designed. The iterative al-
gorithm was stopped when the identified coefficients
nR1, nR0 were close to zero. The resulted controller
was then applied either to the laboratory reactor or
to the computed model. The new comparison of both
closed loops is shown in Figs. 5 and 6.
The results shown in Figs. 5 and 6 demonstrate

that the properties of designed controller were im-
proved. The overshoot was eliminated. Moreover, the
static and dynamic properties of simulated closed loop
well corresponded with the real plant. The time of sta-
bilization of laboratory reactor was still about 2000 s.

Third Estimation

The process was identified again with the aim
to short the time of stabilization of the reactor and
to minimize the differences between compared closed
loops. Again the collected experimental data and con-
troller from the previous step were used. In this case,
the identified plant model from the second estimation
replaced the nominal model GN. The iterative algo-
rithm then provided the new estimation of the plant
model that was used as a basis for control design step.
The new controller was again applied either to the
laboratory reactor or to just estimated plant model.
Comparison of both closed loops is shown in the fol-
lowing figures.
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Fig. 5. Output responses to set-point change – the second es-
timation, experimental (dotted), model (solid).

0 500 1000 1500 2000 2500 
40 

50 

60 

70 

80 

90 

100 

110 

120 

130 

140 

t/s 

q C
H
/(

cm
3   m

in
-1

)  

Fig. 6. Input responses to set-point change – the second esti-
mation, experimental (dotted), model (solid).
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Fig. 7. Output responses to set-point change – the third esti-
mation, experimental (dotted), model (solid).

Figs. 7 and 8 show that the measured and predicted
responses are very close. It can thus be concluded
that the model obtained from closed-loop data is suf-
ficiently accurate for the used set-point change. Note
that good approximation for other set-point changes
is of less importance. The time of stabilization of lab-
oratory reactor was about 1600 s.

CONCLUSION

An iterative scheme for closed-loop identification
was applied to the identification and control of labora-
tory scale continuous stirred tank reactor. The mod-
ified iterative scheme of system identification, based
on the Youla—Kucera parametrization, and control
design were combined. It was demonstrated that the
estimated models despite process nonlinearities and
controller constraints, are control-relevant and that
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Fig. 8. Input responses to set-point change – the third estima-
tion, experimental (dotted), model (solid).
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Fig. 9. Performance error.

controllers can systematically be improved during the
estimations. In the identification step a controller-
relevant process model is obtained by the identifica-
tion of the polynomial nR(s) using time-domain data.
The main advantage of the modified algorithm is that
it is not necessary to use the reduction algorithm as
in the standard approach based on the mentioned
parametrization.
In effort to measure the differences between sim-

ulated and experimental closed loops the following
equation was computed [15]

J∆ =

∞∫

0

[µ(y(t)− yc(t))
2 + ϕ(u̇(t)− uc(t))

2]dt (15)

Here, yc(t), uc(t) represent the output and input signal
of simulated closed loop and µ, ϕ are weighting coef-
ficients used in controller design step. J∆ expresses

the performance error that results from applying con-
troller C designed for plant model Ĝ0, to the actual
plant G0. This error will be small if the actual loop
and simulated loop are “close to one another in the
appropriate sense”. Fig. 9 shows that in this case the
computed performance error systematically decreased.
It should be noted that the used iterative pro-

cedure requires the acquisition of additional data as
each new controller is generated. In industrial appli-
cations this will usually be feasible because the data
are recorded with the plant in closed loop, which is
usually more easily tolerated by plant operators than
collecting data with the controller in manual mode.

Acknowledgements. The work was supported by the Grant
of the Scientific Grant Agency of the Slovak Republic No.
1/7337/20, 1/8108/01. This support is very gratefully ac-
knowledged.

SYMBOLS

cA H2O2 concentration mol m−3

cAV inlet H2O2 concentration mol m−3

cB K2Cr2O7 concentration mol m−3

cBV inlet K2Cr2O7 concentration mol m−3

qA H2O2 feed rate m3 s−1

qB K2Cr2O7 feed rate m3 s−1

qCH coolant feed rate m3 s−1

ν specific reaction rate mol m−3 s−1

V liquid volume of reactor m3

ρCH density of the coolant kg m−3

CP heat capacity of the reactor
contents J kg−1 K−1

CPCH heat capacity of the coolant J kg−1 K−1

ϑ reactor temperature K
ϑCH outlet temperature of the coolant K
ϑCHV inlet temperature of the coolant K
ϑOUT outer temperature K
A heat transfer area m2

α heat transfer coefficient W m−2 K−1

k reaction rate constant s−1

z1, z2 the orders of the reaction 1
−∆H heat of the reaction J mol−1

u(t) input signal m3 s−1

y(t) output signal K
uc(t) simulated input signal m3 s−1

yc(t) simulated output signal K
r(t) reference signal K
d(t) noise signal
z(t), x(t) auxiliary signals
zF(t), xF(t) filtered auxiliary signals
t time s
s operator of the Laplace transformation
G0(s) transfer function of laboratory reactor
Ĝ0(s) transfer function of plant model
GN(s) transfer function of nominal model
C(s) transfer function of controller
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R(s) transfer function of the Youla—Kucera
parameter

F1(s), F2(s) transfer function of filters
A0(s), B0(s)coprime factors of G0(s)
AN(s), BN(s) coprime factors of GN(s)
Q(s), P (s) coprime factors of C(s)
a0(s), b0(s) polynomials of G0(s)
â0(s), b̂0(s) polynomials of Ĝ0(s)
aN(s), bN(s) polynomials of GN(s)
p(s), q(s) polynomials of C(s)
nR(s), dR(s)polynomials of R(s)
m1(s), m2(s) poles of simulated closed loop
m3(s), m4(s) poles of actual closed loop
Rps stable proper rational functions
U unit from Rps
ϕ, µ weighting factors
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