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The application of an identification and control design to the continuous laboratory plant is
presented. The reason of identification is given by the necessity to design the controller, which
provides the suitable tracking of the reference signal described by given temperature profile. Used
identification algorithm is based on the least-squares prediction error estimation. As a result of
identification the parameters of the linear model of continuous system are estimated. This model is
further used for computation of the transfer function of the unknown controller. Since in this case
at the beginning no controller is available, the identification must be performed in the open-loop
configuration.

A key problem in control system design is to handle
uncertainties associated with a plant. Two main tech-
niques for the analysis and design of systems with un-
certainties are robust control [1] and adaptive control
[2]. In the robust control approach a controller is de-
signed based on a nominal model of the plant with the
associated model uncertainties. This has motivated
the development of identification techniques that es-
timate an upper boundary on the deviations between
a plant and its nominal model. For high-performance
control design a well-suited nominal model is needed.
Traditional adaptive control systems that invariably
invoke the principle of certainty equivalence have an
unsatisfactory property of robustness.
In recent years, a revival of interest in the plant

model identification occurred in the context of the it-
erative combination of identification in closed loop and
control redesign [3, 4]. The identification of dynamic
models from experimental data has very often been
motivated and supported by the presumed ability to
use the resulting model as a basis for model-based con-
trol design. A number of identification methods have
been developed and analyzed [5, 6].
The main task of this contribution is to design the

controller that provides temperature stabilization of
plant and good tracking of reference signal. In this
case, the plant is represented by a multikilogram scale
combustion calorimeter. Based on an energy and wa-
ter balance over the whole calorimeter the (upper and

lower) energy value of heterogeneous materials of solid
fuels is measured. Since the exact mathematical model
of calorimeter is unknown, the mentioned controller
must be designed from its estimated linear model. The
estimation of this model is realized by the black-box
identification based on data collected by experiments
performed on the experimental calorimeter.
Here the estimation, based on the least-squares

(LS) prediction error identification, is performed in
the open-loop configuration. Directly identified linear
model is further used to design the parameters of the
controller with proportional and integral part (PI con-
troller). The parameters of the controller can be de-
signed by different ways [7]. The control design strat-
egy, in this paper, is based on the linear quadratic
(LQ) control approach. Here the poles of closed loop
are not designed by the user, like in standard pole
placement approach [7], but they are computed from
identified model via spectral factorization. The advan-
tage of this approach is that the controller is tuned by
setting of two weight factors.

IDENTIFICATION AND COTROL DESIGN

Controlled System

Fig. 1 shows the major components of the plant,
which consists of a combustion chamber 3 with in-
ternal combustion chamber for afterburning, heat ex-
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Fig. 1. Multikilogram capacity calorimeter.

changer 4, and condenser 5, where condensable prod-
ucts are collected. The capacity of the combustion
chamber 3 is from 10 to 20 kg of tested material. The
inlets 1 and 2 represent the primary and secondary
air inlet. The flue gas 6 consists of O2, CO2, CO,
NO, CxHy , H2O. The constitution of flue gas is an-
alyzed automatically. CO2 and CO are analyzed by
BINOS 1.1 (Leybold—Heraeus) and O2 is analyzed
by OXYNOS 1C (Rosemount). Analyzer VE 7 (JUM
Engineers) is used for detection of CxHy. The temper-
atures are measured by Ni/Cr/Ni thermocouples. Gas
meters G4/G6 and G2 measure the amount of natu-
ral gas. The flow of cooling water is measured by a
magnetic-inductive flowmeter MAGFLO.
The energy balance consists of energy of natural

gas, of cooling water, of combustion air, of exhaust
gases, of unburned carbon monoxide and hydrocar-
bons and energy in the condensate.
The water mass balance consists of following par-

titions: water from the combustion of natural gas and
from the combustion of test material, from the com-
bustion air; water in the condensate and in the flue
gas.
The on-line measurement of outlet temperature

and quantities of a gas is provided. The control of the
outlet temperature of the combustion chamber is guar-
anteed by the controllable gasburner. This tempera-
ture can be also influenced by the second uncontrol-
lable gasburner, which represents a measurable dis-
turbance. The second gasburner is used to heat the
system to an initial temperature. Each measurement
requires two test runs. The first run is called the mea-
surement run and works with a fixed amount of test
material. The second run is called the reference and
works without the test material. Since the tempera-
ture conditions for both measurements must be equal,
the suitable controller designed from identified model,
which provides tracking of the defined temperature
profile is required.

Estimation of Linear Model

To make things clear about the estimation of the
linear model of the calorimeter, we shall make the fol-
lowing assumptions.
Assumption 1: The true plant will be assumed to

be representable as follows

y = G(s)u+ v (1)

Here G is a scalar proper rational transfer function,
u is the input signal, v is a possible unmeasurable
disturbance acting on the output signal y.
Assumption 2: Consider that the true plant G(s)

G(s) =
b(s)
a(s)

(2)

is stabilized by controller C(s)

C(s) =
q(s)
p(s)

(3)

and following identity holds

a(s)p(s) + b(s)q(s) = n(s)g(s) (4)

Here b(s), a(s), q(s), p(s), n(s), and g(s) are polyno-
mials from R(s). R(s) denotes the set of stable poly-
nomials. s is operator of the Laplace transformation.
Assumption 1 describes the true plant and it is

standard for identification problem.
Assumption 2 is known from control theory and

guarantees that the designed controller stabilizes the
plant if and only if the polynomials n(s) and g(s) are
stable, see e.g. [7].
We first recall the basic ingredients of predictor

error identification. Consider that the identified model
takes the form

ŷ = G(θ, s)u (5)

Here G(θ, s) is a transfer function with polynomials

b̂(s), â(s) from R(s) parametrized by arbitrary real
vector θ. We notice that the true plant is given by As-
sumption 1. Consider that Assumption 2 also holds for
estimated model, which means that the transfer func-
tion G(s) in this assumption is replaced by G(θ, s).
Notice that we shall use eqns (1) and (5) also as a sys-
tem description for the sampled output values, keep-
ing in mind that the computation of these values will
involve numerical solution of a differential equation
[5].
In LS prediction error identification, the estimation

of the parameter vector θ on the basis of N input-
output data is obtained by minimizing the sum of the
squares of the prediction error [5]

VN =
1
N

N∑
t=1

(ε(θ))2 (6)

230 Chem. Pap. 57 (4)229—236 (2003)



CONTROL OF THE EXPERIMENTAL CALORIMETER

  G(s)
u(t)

y(t)

v(t)

Fig. 2. Open-loop configuration.

where

ε(θ) = y − ŷ = (G(s)− G(θ, s))u + v (7)

The parameter estimate is then defined as

θ = argminVN
θ∈D

(θ) (8)

where D is a predefined set of admissible values.
As we mentioned above, the data have been col-

lected while the process operates in the open loop
(Fig. 2). In such case, signals u and v are uncorrelated
and the prediction error is given by eqn (7). Here the
input signal u is considered as step change signal.
Assume now fixed structure of the unmeasurable

noise (i.e. v(t) = H(σ)ew(t)) where H(σ) is θ-
independent transfer function and ew represents white
noise and σ is operator of differentiation. The expres-
sion (7) shows that the convergence point of θ is in-
dependent of the actual noise distribution. It depends
only on the noise model H(σ) [3].

Controller Design

Our main task that we consider here is to design
a feedback controller, based on the model that is to
be identified from experimental data. This controller
must stabilize the calorimeter and provide expected
control performance. A typical control design type sit-
uation is that the designer has a minimization of some
control performance criterion in mind. The standard
feedback configuration is shown in Fig. 3. Here r rep-
resents the reference signal, uncorrelated to the dis-
turbance v. In the standard LQ control design the
following performance criterion is minimized [8].

JLQ =

∞∫

0

{µe2(t) + ϕũ2(t)}dt (9)

where signals e = r − y and ũ are control error and
derivative of input signal u and where µ and ϕ are
positive weighting factors that reflect the respective
importance given to the tracking error and the control
effort.
This criterion cannot be minimized directly be-

cause it depends on the unknown transfer function
G(s) through the dynamic relationship that links r,
u, and y. Instead, one designs a controller on the ba-
sis of an estimate G(θ, s) of G(s), which we shall in
this paper consider to obtain from plant data by iden-
tification. Based on the procedure presented in [9],
we can compute the parameters of designed controller
from eqn (4). Here the polynomials b(s) and a(s) are

replaced by estimated b̂(s), â(s). In standard LQ ap-
proach deg n ≥ deg a and deg g = deg (a+1) (deg =
degree). These polynomials are given by the following
spectral factorization [9].

n∗n = a∗a

(âs)∗ϕâs+ b̂∗µb̂ = g∗g (10)

Here exponent * represents conjugated polynomial [7].
The values of weighting factors are designed by the
user and depend on the claimed control performance.
Eqn (10) shows that the right hand (the poles of closed
loop) of eqn (4) depends on identified polynomials

b̂(s), â(s) and mentioned weighting factors. Based on
this information we can say that the complexity of
designed controller directly depends on the complex-
ity of identified model. Consider now that the first-
order model is identified with the structure G(θ, s) =

b̂0
s+ â0

. Here b̂0, â0 are coefficients of polynomials b̂(s),

â(s). Using eqns (10) and (4) we can design the con-

troller with the structure C(s) =
q1s+ q0

s(p1s+ p0)
. Here

q1, q0 and p1, p0 are coefficients of polynomials q(s)
and p(s), respectively. For detail information about
LQ control design strategy we refer readers to [8].
In our case we need to design the PI controller

with the structure C(s) =
q1s+ q0

p0s
. This structure of

controller can be designed if the standard pole place-
ment method is used [7] and plant is identified in the

Fig. 3. Closed-loop configuration with negative feed-
back. – Negative feedback.
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form G(θ, s) =
b̂0

s+ â0
. As we mentioned above if the

pole placement approach is applied, the right hand of
eqn (4) depends on the user choice. Our idea is to use
the spectral factorization for design of the right hand
of eqn (4). It is impossible if the polynomial n(s) is
given by eqn (10). As we will show in the next sec-
tion, if we want to design PI controller then we have
to identify the first-order model and define the polyno-
mial n(s) like n(s) = 1. Then it is possible to calculate
the polynomial g(s) by spectral factorization (10) and
finally the parameters of PI controller using relation
(4).
Based on the theoretical background presented

above, we can formulate the following steps of identi-
fication and control design strategy:

Step 1: Collect a data set {u(t), y(t)} of length N
(Fig. 2).

Step 2: Use these signals in LS identification algo-
rithm with prediction error (6), considering y
as an output signal and u as an input signal,
and identify the transfer function G(θ, s).

Step 3: Choose the weighting factors and polynomial
n(s).

Step 4: Compute the polynomial g(s) from relation
(10).

Step 5: Compute the parameters of designed con-
troller C(θ, s) from eqn (4).

In this case the LS algorithm is applied for control-
relevant system identification [10, 11]. The model pa-
rameters are recursively estimated in discrete time
intervals [12]. For more information about identifi-
cation of continuous system in discrete intervals we
refer readers to [5]. In this part of this contribution
the formulated algorithm of identification and control
design (Step 1—Step 5) is applied for the laboratory
calorimeter.

RESULTS AND DISCUSSION

Identification – Steps 1 and 2

In this section the application of identification and
control design is presented. Our task is to design the
controller that provides the tracking and stabiliza-
tion of the temperature in the combustion chamber
3 shown in Fig. 1. This temperature is influenced by
the controllable and uncontrollable gasburner. On the
other hand, this temperature is not strongly influenced
by the unmeasurable noise v. This is the reason why
we considered that v = 0 and the transfer function
H(σ) was not identified. Moreover, the identification
is performed in open-loop configuration and input sig-
nal u is independent of the noise signal. It means that
the convergence point of θ is independent of the actual
noise distribution.

The voltage for controllable gasburner gives the
measurable input signal u and y is equal to the outlet
temperature of the combustion chamber. The measur-
able input signal for uncontrollable gasburner uun is
given by the rate of methane flow. In this experiment
both gasburners were identified. The resulted transfer
functions of both gasburners had the following forms.
Controllable gasburner

G(θ, s) =
b̂1s+ b̂0

â3s3 + â2s2 + â1s+ â0
(11)

Uncontrollable gasburner

Gun(θ, s) =
b̂un1 s+ b̂un0

âun3 s3 + âun2 s2 + âun1 s+ âun0
(12)

The parameters of eqns (11) and (12) were identified
using routines programmed in the Matlab.
At first, the transfer function of uncontrollable gas-

burner was measured. The process was excited by a
step change of uun from 0 to 5.8 m3 h−1. After sta-
bilization of outlet temperature at the value approxi-
mately equal to 593◦C the second excitation was made
and the transfer function for controllable gasburner
was measured. Here the step change of u was from 0
to 1.73 V. For both cases the length of collected data
was N = 360.
The results of identification in an open loop are

depicted in Figs. 4 and 5. These figures compare the
step responses of the uncontrollable and controllable
gasburners with responses of their identified models
for given step changes of the input signals (solid line
– measured data from the process, dotted line – data
from the identified model). From the prediction error
(6) point of view we can say that selected structures
of controllable and uncontrollable gasburners provided
suitable approximation of real ones (the prediction er-
ror (6) reached the minimal value).
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Fig. 4. Step responses of uncontrolled gasburner.
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Fig. 5. Step responses of controlled gasburner.

Controller Design – Steps 3, 4, 5

The identified transfer function G(θ, s) was further
used in control design step, while the model of uncon-
trollable gasburner Gun(θ, s) was used during simu-
lation of controlling outlet temperature of the com-
bustion chamber. The structure of designed controller
was in the form

C(s) =
q1s+ q0

p0s
(13)

Since the structure of the controller was strictly given,
then with respect to eqn (4) the identified transfer
function (11) was reduced to the following relation

Gr(θ, s) =
b̂r0

s+ âr0
(14)

This operation was realized via model reduction al-
gorithm based on a Pade approximation [13] in Mat-
lab. With respect to eqns (4) and (10) the polynomial
n(s) has been chosen as n(s) = 1. Step 4 was realized
through the following equations, derived from eqn (10)

g2 =
√

ϕ

g0 =
√
(b̂r0)2µ (15)

g1 =
√
(âr0)2ϕ+ 2g0

Here the weighting factors ϕ and µ were selected by
the user in step 3. Finally the parameters of the con-
troller were computed from relations (16) – step 5.

p0 = g2

q1 =
g1 − p0â

r
0

b̂r0
(16)

q0 =
g0

b̂r0

Before application to the real plant the de-
signed controller was tested via simulation in Mat-
lab/Simulink software. The scheme of simulated closed
loop is depicted in Fig. 6.
From this scheme it is clear that the simulated

closed loop consists of designed controller (13), es-
timated transfer function of controllable gasburner
(11), and of the measurable disturbance represented
by the estimated transfer function of uncontrollable
gasburner (12). We notice that the reduced model of
controllable gasburner Gr(θ, s) was not used directly
in the scheme shown in Fig. 6. The reason was that
the model described by eqn (11) provides better ap-
proximation of laboratory calorimeter than its reduced
version (14).
Two simulations have been realized for two differ-

ent step changes of input signal uun at the beginning
of the simulation. In the first case the input signal for
uncontrollable gasburner was changed from 0 to 5.8
m3 h−1 and in the second case it was from 0 to 2.6
m3 h−1. In both cases, at the beginning of the sim-
ulation, the outlet temperature had a value 24.5◦C
and the input signal of the controllable gasburner was
0 V. The initialization temperature, the lowest tem-
perature of given temperature profile, was 266◦C. If
the outlet temperature was lower than initialization
temperature, the manual control has been activated.
On the other hand, if the controlled outlet tempera-
ture was equal or higher than initialization tempera-
ture, then the designed controller has been activated

Fig. 6. Simulated closed-loop configuration with
negative feedback. – Negative feedback.
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u(t)
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_
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Fig. 7. Controlled temperature – the first simulation, temper-
ature profile (solid line), outlet temperature (dotted
line).
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Fig. 8. Input signal of controllable gasburner – the first simu-
lation.

and outlet temperature was controlled according to
defined temperature profile. The range of the signal u
was from 0 to 10 V.
The results from the first simulation are presented

in the following figures. Fig. 7 shows that the out-
let temperature of the combustion chamber was not
controlled for time interval from 0 to 450 s, although
the initial temperature (266◦C) was reached in very
short time (t = 45 s, see differences between temper-
ature profile and controlled temperature). This prob-
lem was caused by the fact that the input signal u
had the lowest possible value and so it was not possi-
ble to cool the combustion chamber by used control-
lable gasburner. Fig. 8 illustrates that the controller
began to control the temperature approximately af-
ter t = 450 s. In the time interval from 0 to 450 s
the input signal u had a constant value 0 V. This
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Fig. 9. Controlled temperature – the second simulation, tem-
perature profile (solid line), outlet temperature (dotted
line).
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Fig. 10. Input signal of controllable gasburner – the second
simulation.

condition can be improved by decreasing the step
change of the input signal uun at the beginning of
the simulation, as it is shown in the following re-
sults.
Fig. 9 shows that the heating of the combustion

chamber was longer, approximately 1750 s, than it
was in the first simulation. On the other hand, the
controller began to control the outlet temperature im-
mediately after the initial temperature was reached.
Similarly as in the first simulation also in this case
the input signal u had the value 0 V for time lower
than 1750 s (Fig. 10).

CONCLUSION

In this paper the control design based on the
identification of controllable and uncontrollable gas-
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burner of experimental calorimeter is presented. The
identification was realized in the open-loop configu-
ration. The both gasburners were identified as third-
order models. This structure provided the best ap-
proximation of the plant with respect to the min-
imization of identification criterion. The noise con-
tribution was not identified because the input sig-
nal that was used during open-loop identification
was independent of the noise signal. It means that
the result of identification was not influenced by the
actual noise. It depends only on the noise model
H(σ). Here the simplest model of noise was se-
lected and identification provides satisfactory re-
sults.
The identified model of controllable gasburner was

further used for PI controller design. The control de-
sign step was realized through eqns (4) and (10). The
advantage of the used design method in comparison
with the standard pole placement method is that the
performances of designed controller are tuned by two
weighting factors. Moreover, the properties of closed
loop are not dependent on the user choice but they are
function of identified linear model and the mentioned
weighting factors via spectral factorization (10). Since
the structure of resulted controller was strictly given,
the structure of identified model of controllable gas-
burner was reduced from the third-order model to the
first-order model. Without this reduction it is not pos-
sible to design the PI controller through relations (4)
and (10). Reduction was realized via the method based
on the Pade approximation. The final controller was
designed by tuning of two weighting factors. The de-
signed controller was tested in simulated closed loop.
In this simulation the real gasburners were replaced
by their identified models (third-order models were
used).
Based on the results from simulation we can

say that the designed controller had good tracking
properties. High rate of methane flow for uncontrol-
lable gasburner provided faster heating of the com-
bustion chamber but the controller was not able
to control the outlet temperature immediately af-
ter the initial temperature was reached. Lowering
of the rate of the methane flow for uncontrollable
gasburner increased the time necessary for heat-
ing the combustion chamber to the initial tempera-
ture.
Finally we can consider that the designed con-

troller is suitable for controlling of the experimen-
tal calorimeter. The results from real experiment can
be slightly different in comparison with the results
obtained from realized simulations. This difference
can be caused by possible nonlinear properties of the
calorimeter. In this case the enhancement of designed
controller will reside in application of advanced iden-
tification algorithms presented e.g. in [3], [4] or [14],
which are based on the identification in closed-loop
configuration.

SYMBOLS

u input signal for controllable gasburner V
ũ(t) derivative of input signal for controllable

gasburner V s−1

uun input signal for uncotrollable gasburner
m3 h−1

y output signal – outlet temperature of com-
bustion chamber ◦C

ŷ(t) estimated output signal ◦C
r reference signal ◦C
ew white noise
e control error ◦C
v noise signal
t time s
s operator of the Laplace transformation
σ operator of differentiation
ε(θ) prediction error
θ vector of estimated parameters
G(s) transfer function of controllable gasburner
G(θ, s) transfer function of estimated model of

controllable gasburner
Gr(θ, s)transfer function of reduced model of con-

trollable gasburner
Gun(θ, s) transfer function of uncontrollable gasburner
C(s) transfer function of controller
H(σ) transfer function of unmeasurable noise
a(s), b(s) polynomials of G(s)
â(s), b̂(s) polynomials of G(θ, s)
ar(s), br(s) polynomials of Gr(θ, s)
aun(s), bun(s) polynomials of Gun(θ, s)
p(s), q(s) polynomials of C(s)
R stable polynomials
ϕ, µ weighting factors
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