
Effect of Structure of Turbulence on Drop Breakage*

W. PODGÓRSKA** and J. BA LDYGA

Faculty of Chemical and Process Engineering, Warsaw University of Technology,

PL-00 645 Warsaw

e-mail: podgorsw@ichip.pw.edu.pl, baldyga@ichip.pw.edu.pl

Received 1 April 2002

Possibilities of using several known models of microstructure of turbulence to model drop break-
up rate are presented. The classical theory of turbulence neglects fine-scale intermittency. Here,
intermittency is taken into account and modelled using multifractal formalism when applied to
the inertial sub-range of turbulence. Maximum stable drop size, predicted by the classical theory
of turbulence that neglects its intermittent character, is unequivocally determined by the mean
energy dissipation rate and does not depend on the scale of the system provided that the mean
energy dissipation rate is kept the same in each system. The breakage kinetics based on multifractal
models of turbulence suggests a slow drift of the quasi-stable drop size to the stable drop size that is
determined by the most vigorous turbulent events. Drop size distributions predicted by multifractal
models are compared with predictions of the model based on the classical Kolmogorov theory of
turbulence and with experimental data. All multifractal models predict the changes of the drop size
in time better than the model based on the classical theory and are recommended to model the
breakage processes.

Liquid—liquid dispersed systems are of importance
to the chemical industry; typical examples are: ex-
traction, many processes observed in chemical reac-
tors including emulsion and suspension polymeriza-
tion, preparation of emulsions, etc. Drop size distribu-
tion and its “dynamics” of changes are important fea-
tures of dispersed systems as they have pronounced ef-
fect on the mass-transfer rate and the course of chem-
ical reactions. Proper process and device designing,
scale-up, and process operation require prediction of
the drop size distribution by solution of the population
balance equation. To formulate the population balance
equation under conditions when drop coalescence can
be neglected, one needs to use models and resulting
expressions describing breakage frequency of drops of
volume υ, gυ(υ, ~x, t), at position ~x at time t, probabil-
ity density function for daughter drops β(υ, υ′) repre-
senting the probability of forming of drops of volume υ
from breakage of drops of volume υ′, and the number
of drops created during drop break-up νb(υ). Forms of
these expressions depend considerably on the model of
structure of turbulence used. The aim of this work is
to present possibilities of using several known models
of microstructure of turbulence to model drop break-
up by using the population balance equation in the

form

∂ n(υ, ~x, t)
∂ t

= −gυ (υ, ~x, t) n (υ, ~x, t) + (1)

+

∞∫
υ

β (υ, υ′) νb (υ′) gυ (υ′, ~x, t)n (υ′, ~x, t) dυ′

To achieve this aim, at first models of turbulence
microstructure are presented, then they are used to
predict the maximum stable drop size. In the next part
expressions for drop break-up rate gυ(υ, ~x, t) are for-
mulated and used to predict the drop size distribution
and its time evolution. Then the results are compared
with experimental data to verify the models.

THEORETICAL

Models of Turbulence

The first interpretation of the drop break-up in the
turbulent field was presented in fundamental works
of Kolmogorov [1] and Hinze [2]. In these works,
the structure of turbulent field was interpreted using
Kolmogorov—Obukhov theory [3, 4]. The Kolmogorov
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hypothesis defines the inertial sub-range

ko � k � kK kK = 1/〈η〉 (2)

where the kinetic energy is neither directly received
from the mean flow, nor dissipated into internal en-
ergy.

For objects, the size of which falls within the iner-
tial sub-range of turbulence (〈η〉 � d� L) this theory
leads to the expression for normal pressure stress act-
ing upon particles of diameter d dispersed in turbulent
fluid

p(d) ∼= CpρC

〈
[ur (d)]2

〉
∼= CpρC [〈ε〉 d]2/3 (3)

Presented expression is widely used in predicting
of drop size in liquid—liquid dispersions. However,
starting from experimental studies of Batchelor and
Townsend [5] and pioneer analysis of Obukhov [6] and
Kolmogorov [7] it is known that Kolmogorov theory
is incomplete, as it neglects the problem of fine-scale
intermittency that results in a strong variability of en-
ergy dissipation rate in time and space. Because of this
variability

〈εp〉 6= 〈ε〉p (4)

which also means that〈
u2
r

〉
6= (〈ε〉 r)2/3 (5)

and eqn (3) is not correct.
In this work intermittency will be characterized us-

ing the method proposed by Frisch and Parisi [8].
Starting from the Navier—Stokes equation for ρ =
const and ν = const

∂ui

∂t
+ uj

∂ui

∂xj
= −

1
ρ

∂p

∂xi
+ ν

∂2ui

∂x2
j

(6)

these authors formulated the principles of the multi-
fractal model of turbulence. This model is based on
the invariance of the Navier—Stokes equation after
the following transformation

x′i = λxi (7)

u′i = λ
α
3 ui (8)

t′ = λ1−α3 t (9)

provided that 〈η〉 < r (r =
√

(xi)2), r′ < L, and
L �> 〈η〉, which means that the inertial sub-range
of turbulent scales is considered, where viscous effects
are negligible. The exponent, α, and scale factor, λ, are
arbitrary, provided that r and r′ are in the inertial sub-
range. The consequence of the above transformation
is an analogous transformation for dynamic pressure(

p′

ρ

)
= λ2α/3

(
p

ρ

)
(10)

that will be used in the next part of the paper. Eqn (8)
enables us to show that the velocity increment over a
distance r equals to

ur = uL

( r
L

)α/3
= [〈ε〉 L]1/3

( r
L

)α/3
=

= [〈ε〉 r]1/3
( r
L

)α−1
3

(11)

Introducing now eqn (11) into eqn (3) gives normal
stresses acting upon a particle of diameter d [9]

p (d, α) = CpρC [〈ε〉 d]2/3
(
d

L

) 2
3 (α−1)

(12)

Turbulent events described by different exponent α
appear in real flows with different probability. Appli-
cation of the multifractal model of turbulence enables
us to determine probability density function P (α) in
the box of size r in the ds-dimensional space

P (α) ∼= ρ(α)
( r
L

)ds−fd(α)
for

r

L
→ 0 (13)

where ρ(α) is an α-dependent factor, whereas the mul-
tifractal spectrum fd(α) is interpreted as a fractal di-
mension in a ds-dimensional space. Using expressions
(11—13) one can define several models of the turbu-
lence microstructure.

For exponent α = αmin = αmax = 1 one has
P (α) = δ(α − 1), and the energy dissipation rate has
uniform value 〈ε〉, which corresponds to the classical
Kolmogorov theory [3].

The oldest model of intermittent turbulence is log-
normal model [6, 7]. The log-normal distribution of
the energy dissipation rate εr is equivalent to the
parabolic distribution of fd(α)

fd(α) = Do −
(α − αo)2

4(αo −Do)
(14)

where ds = 1, Do = 1, and αo = 1.117 [10]. According
to these authors eqn (14) agrees well with the results
of measurements for 0.51< α < 1.78. The next contin-
uous α-distribution is empirical distribution proposed
by Ba ldyga and Podgórska [11]

f (α) = a+bα+cα2+dα3+eα4+fα5+gα6+hα7+iα8

(15)
where a = −3.51, b = 18.721, c = −55.918, d =
120.90, e = −162.54, f = 131.51, g = −62.572,
h = 16.10, i = −1.7264 for ds = 1 and α ≥ 0.12,
where this minimum α value was measured by Mene-
veau and Sreenivasan [12].

A theoretical derivation of multifractal spectrum
fd(α) was performed by She and Leveque [13]

fd (α) = 1+C′1

(
α−

1
3

)
−C′2

(
α−

1
3

)
ln

[
1
3

(
α−

1
3

)]
(16)
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C′1 =

1 + ln

(
ln

3
2

)
ln

3
2

− 1

 C′2 =
1

ln
3
2

In this model the minimum value of a multifractal
exponent α is slightly larger than the value measured
by Meneveau and Sreenivasan [12] and equals αmin=
1/3.

Stable Drop Size

Maximum stable drop size in a dilute noncoalescing
dispersion can be calculated by a balance between dis-
persive turbulent stresses, which for inertial sub-range
of turbulence are given by eqn (12), and stabilizing
stresses. In the case of dispersed phase of low viscos-
ity that is considered here the stabilizing forces are
due to interfacial tension. The case of viscous drops is
considered elsewhere [11].

According to the classical Kolmogorov theory [3]
corresponding to α = 1 and P (α) = δ(α − 1) the
maximum stable drop size is given by the well-known
equation

do
max =

Cxσ
0.6

〈ε〉0.4 ρ0.6
C

(17)

which in a dimensionless form is often formulated as
do

max/D ∝We−0.6.
The three multifractal models predict the correc-

tion factor A in the equation dmax/D ∝ We−0.6A

where A = [1− 0.4(1− α)]−1. In the case of log-
normal energy dissipation rate there is no limitation
for α. The log-normal distribution does not result in
any stable drop size. In two other cases asymptotically
stable size is determined as dmax ∝ DWe−0.926 and
dmax ∝ DWe−0.818 for αmin = 0.12 and αmin = 1/3,
respectively.

Drop Break-up Rate for Considered Models of
Turbulence Microstructure

The break-up rate of drop of diameter d, gd(d, ~x, t),
is proportional to the frequency of turbulence motion
on the scale of drop size d

gd(d, ~x, t) ∝ 〈ε (~x, t)〉1/3 d−2/3 (18)

Eddies larger than d convey the drops and eddies
smaller than d are not strong enough to disperse it.
Of course, not all drop-eddy interactions lead to drop
break-up. The multifractal models of turbulence pre-
dict directly which eddies are vigorous enough to cause
drop break-up. Ba ldyga and Podgórska [11] derived
breakage frequency function by summing up for any
position ~x at any time t the contributions to the break-
up frequency from all vigorous enough eddies

gd (d, ~x, t) =

αx∫
αmin

g (α, d, ~x, t)P (α, ~x, t) dα (19)

The weakest eddies that are vigorous enough to
cause drop break-up are labelled by the scaling expo-
nent αx resulting from the comparison of dispersive
and stabilizing stresses

αx =
2.5 ln

(
L (~x, t) 〈ε (~x, t)〉0.4 ρ0.6

C σ−0.6C−1
x

)
ln(L (~x, t)/d)

− 1.5.

Regarding drops smaller than the integral scale of tur-
bulence, L, but not necessarily so small that d/L→ 0,
one gets the expression for the drop break-up fre-
quency in the form

gd (d, ~x, t) = Cg

√
ln

(
L (~x, t)
d

)
〈ε (~x, t)〉1/3 d−2/3 ·

·

αx∫
αmin

(
d

L (~x, t)

)α+2−3 f(α)
3

dα

(20)

with f(α) given either by eqn (14), or (15) or (16).

RESULTS AND DISCUSSION

The maximum stable drop size predicted by the
classical theory of turbulence, so neglecting its inter-
mittent character, is unequivocally determined by the
mean energy dissipation rate 〈ε〉 and does not depend
on the scale of the system at constant 〈ε〉. The three
multifractal models of turbulence suggest a slow drift
of the quasi-stable drop size from the value described
by α ∼= 1, corresponding to the most probable turbu-
lent events, to the really stable drop size determined
by the most vigorous turbulent events that are charac-
terized by the smallest α value. It should be pointed
out that using f(α) expressed in the form given by
eqn (15) with αmin = 0.12 results in asymptotically
stable drop size proportional to We−0.93. Such an ex-
ponent on the Weber number was observed by Konno
and Saito [14] after long agitation time.

The stirred tank turbulence is strongly inhomoge-
neous and various regions of the tank differ in prop-
erties of turbulence including energy dissipation rate,
〈ε〉, and integral scale of turbulence, L, so also drop
break-up rates in the impeller zone should be much
larger than in the bulk. To take this into account
a one-dimensional, single circulation-loop plug flow
model was used in this investigation. Along the loop
there are defined zones differing in properties of turbu-
lence. Two zones are assumed in this paper with local
values of the average energy dissipation rate 〈ε〉 calcu-
lated using correlation by Okamoto et al. [15]. Integral
scale of turbulence L in the impeller zone is assumed
to be L = 0.1D and in the bulk zone 3 times larger.
The flow rate within the circulation loop is assumed to
be equal to the pumping capacity of the impeller. The
model enables calculation of the drop size distribution
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at any position in the circulation loop. Using the drop
break-up frequency gd (d, ~x, t), eqn (20), and probabil-
ity density function for daughter drops, β (υ, υ′), one
can predict evolution of the drop size distribution in
time by solving the population balance equation (1). A
U-shaped distribution of β (υ, υ′) proposed by Tsouris
and Tavlarides [16] was used in modelling. Number of
daughter drops was assumed to be 2. To solve the pop-
ulation balance equation (1) it was discretized in the
drop volume domain

(
υ = πd3/6

)
using the method of

Kumar and Ramkrishna [17]. This method considers
drop population in discrete size ranges concentrated
at representative volumes. The size range contained
between two volumes υi and υi+1 is called the i-th
section and is represented by the grid point wi, such
that υi < wi < υi+1 and υi = (wi−1 + wi)/2. The
grid applied in this work is of a geometric type with
wi+1 = 1.05wi. Events leading to the formation of
drop sizes other than the representative size are in-
corporated into the set of discrete equations in such
a way that two properties corresponding to two mo-
ments of interest are exactly preserved. In our case
a new drop is assigned to the adjoining representa-
tive volumes in such a way that drop numbers and
mass is preserved. The resulting set of ordinary dif-
ferential equations was solved using the fifth-order
Fehlberg method with error control and adjustment
of the time-step of integration. Comparison of the
drop size distributions obtained using the Kumar and
Ramkrishna [17] method agrees very well with the re-
sults obtained using discretization technique based on
uniform grid yielding extremely accurate solution. The
advantage of the Kumar and Ramkrishna discretiza-
tion method used is that it requires smaller number
of size ranges. Resulting discrete drop size distribu-
tions are presented both as distribution curves for
volume fraction, fυ vs. d, and cumulative distribu-
tions, Fυvs. d. Fig. 1 shows a comparison of the evolu-
tion of drop size distribution predicted by multifractal
model with f(α) given by eqn (15) with experimental
data reported by Konno et al. [18]. The authors stud-
ied break-up of drops in the system where dispersed
phase was represented by the mixture of o-xylene and
carbon tetrachloride and as a continuous phase the
distilled water with a small amount of Na3PO4 was
used. Physical properties of this system are as follows:
ρC = 998 kg m−3, ρD = 1040 kg m−3, σ = 0.034
N m−1. Dispersed phase volume fraction used in ex-
periments was equal to φ = 0.002. Parameters of the
break-up model Cg = 0.0035 and Cx = 0.23 were de-
termined by Ba ldyga and Podgórska [11]. Experimen-
tally determined drop size distribution for t = 3 min
was used as an initial size distribution for calculations.
As seen, the experimental and calculated drop size dis-
tributions agree well at short (10 min, 30 min) and
long agitation times (300 min). It can be shown that
the break-up takes place mainly in the impeller zone,
where the energy dissipation rate is much larger than

� ��� ��� ��� ���
���

���

���

���

���

���

F
υ

d  / µm

Fig. 1. Comparison between calculated (solid lines) and exper-
imental [18] (dashed lines) transient drop size distribu-
tions (curves from right to left show distributions after
t = 10 min, 30 min, 300 min). T = 0.3 m, T/D = 2, N
= 93 min−1.

in the bulk. However, the drop size distributions in
both zones are almost identical and the difference be-
tween them is too small to be shown in the figure.
More examples of model predictions and experimen-
tal data one can find in the previously mentioned work
[11], where the same pair of Cg and Cx parameters was
used for different systems. Here we are rather inter-
ested in comparison of the multifractal model based
on multifractal spectrum f(α) given by eqn (15) with
two other multifractal models and the model based on
the classical Kolmogorov theory of turbulence.

Fig. 2 shows a comparison of drop size distribution
predictions by the three multifractal models. It can
be seen that all of them predict similar distributions,
but differences between predictions increase with ag-
itation time, when rare but most vigorous turbulent
events affect the process. In the multifractal model
corresponding to the log-normal distribution of energy
dissipation rate, there is no limitation for multifractal
exponent. This model predicts the fastest drop break-
up. This is connected with the fact that f(α) agrees
well with measurements only for α > 0.51, for smaller
α-values corresponding to the most violent bursts of
turbulence the discrepancy between parabolic multi-
fractal spectrum f(α) and experimental data of Me-
neveau and Sreenivasan [12] increases as α decreases.
Application of the multifractal spectrum of She and
Leveque [13] gives the slowest break-up, which results
from the fact that the most vigorous eddies are deter-
mined by αmin = 1/3.

In the case of classical Kolmogorov theory of tur-
bulence the break-up probability is given by the prob-
ability density function P (α) = δ (α− 1) that would
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Fig. 2. Comparison of drop size distributions (curves from
right to left show distributions after t = 10 min, 30
min, 300 min) for T = 0.3 m, T/D = 2, N = 93 min−1

predicted by different f(α) multifractal models: solid
line – eqn (15), dashed line – model of She and Leveque
[13], and dotted line – parabolic model.
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Fig. 3. Comparison between the experimental [18] (dashed
lines), transient drop size distributions (curves from
right to left show distributions after t = 10 min, 30 min,
300 min) and distributions calculated by the model of
Coulaloglou and Tavlarides [19] (solid lines). T = 0.3
m, T/D = 2, N = 93 min−1.

be equal to 1, so additional assumption is needed. In
what follows, the popular model of Coulaloglou and
Tavlarides [19] is used. The authors assumed that the
fraction of breaking drops is proportional to the frac-
tion of turbulent eddies colliding with the drop that
have energy greater than the droplet surface energy

0 100 200 300 400
0.000

0.002

0.004

0.006

0.008

0.010

0.012

f υ / 
µm

-1

d / µm

Fig. 4. Comparison of the drop size distributions after 5 h of
agitation predicted by the model based on the classical
theory of turbulence and multifractal models. Solid line
– [11], dashed line – [13], dotted line – parabolic model,
and dotted-dashed line – [19].

and that the fraction of eddies with kinetic energy
greater than droplet surface energy is equal to the
number fraction of eddies that have velocities greater
than a corresponding fluctuating velocity. Fig. 3 shows
evolution of drop size distribution predicted by the
model of Coulaloglou and Tavlarides in comparison
with the experimental data. It can be seen that the
difference between the drop size distributions for short
and long agitation times is smaller than that one pre-
dicted by multifractal models or observed experimen-
tally. The differential volume fractions after 5-hour ag-
itation predicted by all models discussed in this work
are shown in Fig. 4. All multifractal models predict
smaller droplets than the model based on the Kol-
mogorov theory; some differences between predictions
of multifractal models can be used in the future for
verification of models.
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SYMBOLS

A correction factor in the exponent on Weber
number

C′1, C
′
2 constants in She and Leveque model of tur-

bulence
Cg, Cx constants in the breakage model
Cp proportionality constant of order unity
dmax maximum stable drop diameter m
do

max maximum stable drop diameter when ne-
glecting intermittency m

d drop diameter m
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ds space dimension
Do constant in eqn (14)
D impeller diameter m
fd(α) multifractal spectrum
f(α) multifractal spectrum fd(α) for ds = 1
fυ differential volume fraction m−1

Fυ cumulative volume fraction
g (α, d, ~x, t) characteristic frequency of eddies of

scale d labelled by the multifractal expo-
nent α s−1

gd (d, ~x, t) break-up rate of drops of diameter d
at position ~x at time t s−1

gυ (υ, ~x, t) break-up rate of drops of volume υ at
position ~x at time t s−1

kK Kolmogorov wavenumber m−1

ko wavenumber for energy-containing
eddies m−1

k wavenumber m−1

L integral scale of turbulence m
n (υ, ~x, t) number density of drops of volume υ at

position ~x at time t m−6

N impeller rotational speed s−1

p pressure Pa
p (d, α) pressure stress acting upon drop of diame-

ter d Pa
p (d) pressure stress acting upon drop of diame-

ter d according to the Kolmogorov
theory Pa

P (α) probability density function for α
r distance m
t time s
T tank diameter m
u, ui velocity, velocity component m s−1

uL the r.m.s. velocity fluctuation m s−1

ur velocity difference over distance r m s−1

υ, υ′ drop volume m3

We Weber number for stirred tank(
= N2D3ρC/σ

)
~x position vector

Greek Letters

αmax supremum of multifractal exponent α
αmin infimum of multifractal exponent α
αo constant in eqn (14)
α multifractal exponent
β (υ, υ′) probability density function for daughter

drops m−3

δ (x) Dirac delta function
εr local rate of energy dissipation averaged

over a domain of size r m2 s−3

ε turbulent energy dissipation rate per unit
mass m2 s−3

〈ε〉 ensemble average of ε m2 s−3

〈η〉 Kolmogorov microscale m
λ scaling factor
ν kinematic viscosity m2 s−1

νb (υ) number of drops formed per breakage of
drop of volume υ

ρ density kg m−3

ρ(α) factor in eqn (13)
σ interfacial tension N m−1

φ dispersed phase volume fraction

Subscripts

C continuous phase
D dispersed phase
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