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Jacaranda is an automated process synthesis package. It can be used to aid an engineer in making 
decisions in the early stages of process plant design. In order to search the solution space, variables 
such as pressures and component flow rates are mapped to discrete levels. This discretisation means 
that optimal structures may be missed. In addition, the user may have no idea of how finely to 
discretise a given variable. This paper describes the use of intervals to bound the possible values 
of discretised variables. The method was applied to a five-component separation problem using 
distillation. The pressure of streams and distillation units were set to be intervals. Interval arithmetic 
was used to bound the possible costs of unit designs. The list of best solution structures was 
determined for capital, operating and annualised cost criteria. It is demonstrated that the use of 
interval analysis within Jacaranda enables the user to ensure that the global optimum is present 
within the solutions obtained. 

In the early stages of process plant design, an en­
gineer may be faced with a large number of possible 
structures and alternative unit design parameters. The 
automated process synthesis package. Jacaranda [1], 
can be used to gain insight into the problem and iden­
tify the best flow sheets. It generates a list of the best 
solutions with respect to one or more criteria and is 
based on an implicit enumeration approach with dy­
namic programming. The system relies on discretisa­
tion for handling continuous variables such as pressure 
and component flow rates in streams. 

The fact that these discretisations are necessary 
has several effects on the results. The solutions pro­
duced will consist of units and stream products each 
at one of the discrete levels set when the problem was 
formulated. The best solution for a given level of dis­
cretisation may not represent the globally optimum 
flow sheet structure in continuous space as potentially 
good values for the discretised variables may be missed 
between the discrete levels chosen. 

Currently, the level of discretisation of streams and 
units is specified by the user. In some cases, user inter­
vention may be appropriate. For example, some com­
ponents may be more important than others for envi­
ronmental or economic reasons. The base flow rate of 
these components would be set to lower values than 
the others. In addition, the engineer may know the 
pressure range of operation for distillation columns 

and base the range and level of discretisation on this 
knowledge. See Laing and Fraga [2] for a discussion 
on the iterative use of an automated procedure with 
particular emphasis on user interaction. 

Typically, however, the engineer may have no in­
sight on the level of discretisation required for a given 
problem. Furthermore, the solutions generated give no 
indication of the effect of the discretisation on the ef­
fectiveness of the search procedure. This paper de­
scribes a method of bounding the objective function 
values produced, and used for ranking the solutions, 
by Jacaranda. 

T H E O R E T I C A L 

Interval Analysis 

The need for bounds on the solutions is as a re­
sult of discretisations made from continuous to dis­
crete space. For example, the problem may involve 
separation by distillation. A solution may describe a 
flow sheet structure containing a series of distillation 
columns each at a discrete operating pressure. A range 
of pressures between 0.1 and 1 MPa with 10 discrete 
pressure alternatives could be discretised uniformly. 
The discrete values of pressure would be accurate to 
the nearest bar. An alternative at 0.2 MPa would actu­
ally represent a range of values with a lower bound of 
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1.5 MPa and an upper bound of 2.5 MPa. The same 
applies to all discretised variables, both in streams 
and units. It follows that the accuracy of the objec­
tive function value obtained will be limited by the 
discretisations. 

Interval methods have been used previously within 
process engineering. They have been applied in order 
to find all roots to a problem with mathematical cer­
tainty [3]. This was tested on several chemical engi­
neering simulation problems. Interval analysis has also 
been applied to the global optimisation of selected flow 
sheets [4]. 

The framework of Jacaranda allows any unit model 
to be written as long as it accepts a process stream and 
outputs another with information on pressure, phase, 
and composition. The generic nature of the framework 
allows us to consider the use of models that work with 
intervals instead of just real numbers. This section de­
scribes how interval methods have been used to bound 
the effects of discretisation on the pressures of streams 
and distillation units. The results in the following sec­
tion will show how the method has been applied to a 
5-component separation problem described by Rathore 
et al. [5]. 

Interval Ar i thmet ic 

Interval mathematics was first introduced by 
Moore [6]. An interval is a closed bounded set of real 
numbers, X = [a, 6], where a < x < b. An inter­
val of zero width (i.e. with the same values for both 
lower and upper bounds) is called a degenerate inter­
val. In the discussion that follows, interval variables 
will be denoted by upper case letters and real vari­
ables by lower case letters. The bounds of the interval 
are shown by square brackets enclosing the real lower 
bound followed by a comma and then the real upper 
bound e.g [a,b]. 

A set of arithmetic operations can be defined for 
intervals that correspond to the operations on real 
numbers. If X and Fare both intervals, X от Y will 
yield an interval containing every possible number 
that can be calculated resulting from the operation 
of each x e X on each y e Y. A set of rules 
for interval arithmetic have been developed from this 
definition [7]. 

Interval Funct ions 

An interval function will yield an interval when 
applied to one or more interval arguments. An interval 
function, F , is said to be an interval extension of a real 
function, /, if 

F(x)=f(x) V i 9 » (J) 

If the arguments of F are degenerate intervals, then 
F is an interval extension of / if they are equal when 

evaluated. 
The natural interval extension of a function / is to 

replace the variables of the real function with interval 
variables but there are, in fact, an infinite number of 
interval extensions of a function. 

An interval function is said to be inclusion mono-
tonic if Xi С Y{, iI = 1, . . . , n implies that 

ВДГ..А)СЩ,...,УП) (2) 

Interval functions, containing a sequence of interval 
addition, subtraction, multiplication, and division op­
erators, are inclusion monotonie [7] if the interval ex­
tension retains the same form when evaluating A~ and 
Y. An example of this is presented in [8]. 

If an interval function, F(A"i,.. -, A"n), is an inclu­
sion monotonie interval extension of a real function 
/ ( x i , . . . , x n ) , then F(A"i,.. .,A r

n) contains all the 
possible values of / ( x i , . . - ,x„), for all x* G A"» (i = 
1,. . . , n) [7]. This result will prove useful in bounding 
the value of the global optimum in an optimisation 
procedure. 

D e p e n d e n c y 

The interval returned by an interval function de­
pends on the form that the function takes. For exam­
ple, 

Fi(X) = A 2 - A - 3 

F2(X) = (X-l/2)2-3± 

are both interval extensions of 

/ (x) = x 2 - x - 3 

yet they do not yield the same result when evaluated 

F,([l, 2]) = [-4, 0] 

F 2 ([ l , 2]) = [ - 3 , - l ] 

F2 produces sharper bounds for the range of / over the 
interval [1, 2] than F\. This is due to the dependency 
phenomenon associated with interval arithmetic. Gen­
erally, the more often a given variable occurs within 
a function, the wider the bounds become. In fact, F 2 

yields the exact range of / for X = [1, 2] as X only 
occurs once in the function. When evaluating interval 
functions, dependency should be kept to a minimum 
so as to keep the bounds as sharp as possible. 

Thick a n d T h i n Funct ions 

The term "parameter" will be used to refer to the 
constant values, either real or interval, within a func­
tion. The argument is the value of the function vari­
able at which the function is evaluated. A thick func­
tion has interval valued parameters whereas a thin 
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function has only real valued (or degenerate interval 
valued) parameters. A thin interval function evalu­
ated on a degenerate interval argument will return a 
degenerate interval; a thick function would return an 
interval value. The procedures described below will all 
deal with thick functions. 

Interval Analysis wi thin Jaca randa 

The motivation for using interval analysis within 
Jacaranda is to generate upper and lower bounds 
for the optimisation criteria values obtained. These 
bounds are required because the optimisation pro­
cedure within Jacaranda is based on discretisation. 
Streams are mapped to discrete space through the 
discretisation of the pressure of the stream and by 
mapping the component flow rates to an integral mul­
tiple of some base flow rate. The discrete mappings of 
streams is used by the dynamic programming aspects 
of the Jacaranda system which allows for the efficient 
re-use of computation. Unit design parameters are also 
discretised. The combinations of the different discrete 
values for the parameters define the design alterna­
tives available to the search procedure. 

In the first instance, we have decided to consider 
interval analysis to analyse the effect of discretisation 
on the pressure, both of streams and as unit operating 
conditions. Pressure is chosen because there is no a 
priori discretisation available to the user and, hence, 
the choice of discretisation parameters is arbitrary. 

New stream and distillation models have been im­
plemented that can handle and manipulate pressure 
intervals rather than single real values. Each distil­
lation column design produces a lower, nominal and 
upper bound on the objective function which may be, 
for example, capital cost. The nominal value is based 
upon the discrete real values of the feed stream pres­
sure and the distillation column operating pressure. 
The lower and upper bounds are determined by solv­
ing the model using interval arithmetic with the pres­
sure as an interval, in both streams and columns. 

The Disti l lation Uni t Model 

The distillation model is based upon the Fenske 

l o g ^ Ü 
Nmln = _ « * ( 3 ) 

, <*ik log 

«hk 

Underwood [10], 

E3+<-=» w 

and Gülüand [11] 

fímin + l = ] T ^ (5) 

correlations. Capital and operating cost models are 
provided by Rathore et al. [5]. 

The column model assumes semi-sharp separation. 
Non-key components pass completely into the top and 
bottom products. The key components are split ac­
cording to the fractional recovery specified. This was 
set to be 98 % in all cases. The component flow rate 
discretisation is set to 10 % of the component flow 
rates in the feed stream. As a result, the semi-sharp 
column acts as a sharp separator when the discretisa­
tion procedures are applied to the outputs of the units. 
Product tanks accept streams that are over 90 % pure 
in any of the components. This is consistent with the 
level of component discretisation. 

Heat exchangers are costed based upon the heat 
transfer area required. Continuous utilities are avail­
able [5]. A constant temperature difference of 8.5 К 
between utilities and the process streams is assumed 
in order to calculate the exchanger area. 

The unit model is presented with a feed at a pres­
sure within a certain interval. Each particular distil­
lation unit alternative also has a pressure range as­
sociated with it. The design generated yields interval 
values for the height, diameter, and heat exchanger 
areas for all possible stream and distillation pressures 
by the application of interval arithmetic in the design 
calculations. 

T h e R o o t of a Thick Interval Funct ion 

It is necessary to solve eqn (4) to determine 0, a 
value between the relative volatilities of the keys. If in­
terval analysis is used, this value is itself an interval, 
0 . This is not only because the relative volatility of 
component i, a,-, varies with pressure but also because 
the column is to be designed for a pressure interval. 
The parameter g is a measure of the fraction of the 
feed that is vapour. This is calculated by comparing 
the enthalpy of the feed at its current pressure to its 
enthalpy at the column pressure. Since both the feed 
and the column are within certain pressure intervals, 
the enthalpy will also be an interval. Q will contain the 
range of possible real values of q. Note, the range of a 
is not as sharp as theoretically possible because of de­
pendency due to the interaction of pressure intervals. 
This will be discussed further in the next section. 

The evaluation of Q is a thick function. The so­
lution is obtained by a bisection method. This is the 
most convenient option as it is known that 0 must 
be between the relative volatilities of the keys and it 
is assumed that there is only one root between these 
bounds. Real values of в within the root interval, 0 
must meet the criterion that / ( 0 ) П [—£,e] ф 0. This 
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means that for any value of 0, there is at least one pos­
sible design for some combination of real values within 
the Q and a intervals. 

RESULTS 

A Separat ion Case Study 

The problem attempted [5] is the separation of a 
5-component hydrocarbon mixture. This problem has 
previously been attempted using Jacaranda [5] but the 
results obtained gave no indication of the effect of dis­
cretisation or certainty that the global optimum lay 
within the bounds of the discrete structure obtained. 
The operating pressure for the distillation units was in 
the range of 0.1 and 3.2 MPa. The number of discrete 
levels for the operating pressure was varied between 
runs and the effect on the criteria values noted. The 
criteria for optimisation were capital, operating and 
annualised (capital amortised over two years) costs. 
For each criterion, solutions were obtained by ranking 
according to the value of the lower bound and also the 
nominal bound. 

Fig. 1 shows the capital cost of the three best solu­
tions ranked according to the lower bound on the cap­
ital cost. The positions of bars on each line correspond 
to lower, nominal, and upper values of cost. The costs 
of the solutions are shown for various degrees of dis­
cretisation. As the number of discrete points increases 
the bounds on the solution become tighter. 

It is important to stress that these bounds are not 
as tight as possible due to dependency. Nevertheless, 
the bounds strictly contain all the possible values of 
the objective function for a particular solution as a 
function of the operating pressure intervals chosen by 
the distillation units. This bounding information can 
be used to determine whether a particular flow sheet 

-
r J -

j : 
S ] 
t * 

i í 
] j 
S : 

J : T : : 
1 IV „ i Y 

: T í l - ' " 

n I*- I 

16 32 64 128 256 

Fig. 1. Top three solutions ranked according to the lower 
bound for capital cost. 1st best - solid lines. 2nd best 
- long-dash lines, 3rd best - short-dash lines. 
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Fig. 2. Top three solutions ranked according to the lower 
bound of the annual operating cost. The meaning of 
lines as in Fig. 1. 

structure could potentially include the global opti­
mum solution. Note, this is only true if we assume that 
the other discretisations performed by Jacaranda have 
a negligible effect on the objective function value. Al­
though not true in general, for this problem the effect 
of pressure discretisation is much larger than the effect 
from other discretisation variables and, furthermore, 
the discretisation parameters for the other variables 
can be chosen with more confidence through the use 
of engineering insight. 

Fig. 2 shows the bounds on the annual operating 
cost for solutions ranked according to the lower bound 
on the operating cost. As with capital cost, increasing 
the level of discretisation sharpens the bounds. As a 
percentage of the nominal value, the bounds on oper­
ating cost are much wider than those of capital cost. In 
particular, the difference between the upper and nomi­
nal values is large compared to the difference between 
the lower and nominal values due to the equations 
used to determine heating and cooling requirements. 
Specifically, the large bounds are due to dependen­
cies in the calculation of the heat balance around the 
column. The enthalpies of the streams are intervals as 
they are functions of the operating pressure. However, 
the feed enthalpy is a function of the stream pressure. 
The combination of these leads to large bounds. 

Jacaranda currently discretises variables and de­
termines a solution in terms of discrete values. This 
gives no assurance that optimal solutions are not 
missed by overly coarse discretisation. Bounded re­
sults can provide this assurance: if the upper bound of 
the objective function value of the best solution value 
is smaller than the lower bound of the second ranked 
solution, the global minimum must be the structure 
represented by the best solution, with operating con­
ditions within the interval used by that solution. This 
is a useful result as it allows us to identify the dis­
cretisation level to use to generate the best solution. 
However, even more information can be gleaned from 
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the nominal value (calculated from the stream and 
unit pressure mapped to real values). 

Throughout these experiments, the discrete pres­
sures allowed in streams and columns were kept consis­
tent. The pressure of a stream leaving a column would 
not change due to the mapping to discrete space as it 
would already be at one of the stream pressure lev­
els allowed. The nominal value of the unit's operat­
ing pressure is never mapped to another value, so the 
nominal value of an optimisation criterion is a feasi­
ble value. This is, of course, only true if there were no 
other discretisations but, as mentioned above, we have 
assumed that these other discretisations are negligible 
in comparison with the pressure discretisations. 

The argument used above when comparing the up­
per bound of the best solution with the lower bound 
of the second best solution can also be applied using 
the nominal value of the best solution. As this nom­
inal value is a guaranteed attainable value, it is an 
upper bound on the global optimum. Therefore, if the 
nominal value of the best solution is smaller than the 
lower bound of second ranked solution, the global op­
timum value must be between the lower and nominal 
values of the best solution. We can ignore the range 
of values above the nominal value for all solutions and 
Figs. 3 and 4 present the results for the three finest 
levels of discretisation in this light. Fig. 3 shows that, 
using 64 discrete pressure levels, the global minimum 
can be identified. With 256 discrete pressure levels, 
we can also distinguish between the 2nd and 3rd best 
solutions. 

Fig. 5 shows the results using an annualised cost 
criterion, the sum of the operating cost with the cap­
ital cost amortised over two years. With 128 discrete 
pressure levels, the upper bound for the top ranked 
structure is smaller than the lower bound on the min­
imum of the second ranked structure. The best struc-
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F i g . 3. Top three solutions ranked according to the lower 
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F i g . 4. Top three solutions ranked according to the lower 
bound of the operating cost using the nominal value 
as an upper bound. The meaning of lines as in Fig. 1. 
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F i g . 5. Top three solutions ranked according to the lower 
bound of the annualized cost, using the nominal value 
as an upper bound. The meaning of lines as in Fig. 1. 

ture is therefore guaranteed to be the global optimum. 
Using 256 discrete levels, the second and third best so­
lutions can be identified with certainty. Solutions were 
also ranked according to the nominal value of the three 
criteria used. For the finer, and generally for all, levels 
of discretisation, the structures obtained were ranked 
in the same order as was obtained bj' ranking accord­
ing to the lower bound. The solutions were different 
in the choice of operating conditions. 

C O N C L U S I O N 

The use of interval analysis with Jacaranda allows 
the user to gain some insight into the effect of dis­
cretisations on the solutions obtained. If a clear gap 
exists between the nominal value of one solution and 
the lower bound of a subsequent solution, there is a 
guarantee that the better solution is indeed better, at 
least with respect to the discretisation parameter in­
vestigated. The bounds generated for the optimisation 
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criteria are not tight in some cases. Nevertheless, they 
are valid bounds: the criteria values cannot be out­
side this range for a given structure and discretisation 
parameter values within the interval chosen. Further­
more, as the number of discrete levels increases, the 
bounds on the criteria values become sharper. 

If the objective function is minimised for the lower 
bound, then the global minimum is bounded. If the 
stream and distillation model pressure discretisations 
are kept consistent, the presence of the global op­
timum can be assured. Its presence can be identi­
fied if the lower bound of the second best solution 
is greater than the nominal value calculated for the 
best solution. In effect, the nominal value is an upper 
bound on the minimum for that solution. Any uncer­
tainty that discretisation of the parameter analysed 
may have caused another optimal solution structure 
to be missed is removed. If minimisation is carried out 
on the nominal value, the presence of a solution for 
this value of the objective function is assured. A lower 
bound, however, is not necessarily attainable due to 
dependency in the interval analysis. This issue will 
be addressed in future work to further sharpen the 
bounds on the solutions. 

In terms of the optimum solution, some structures 
can be discounted on the basis of their bounds. In the 
future, this property may be used within an adaptive 
procedure to automatically set the level of discretisa­
tions used. Structures that did not contain the global 
optimum could be discarded before increasing the level 
of discretisation until one structure or a ranked list of 
best structures remained. In this work only one vari­
able, pressure, was included in the interval analysis 
procedures. In the future, the effect of the discretisa­
tion of component flow rates and other unit operating 
conditions will be examined. When all discrete vari­
ables are incorporated into the interval analysis pro­
cedures, we will be able to guarantee the identification 
of the globally optimum flow sheet. 
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S Y M B O L S 

Nm\n minimum number of stages 
x mole fraction of liquid 
y mole fraction of vapour 
a relative volatility 
в the root of eqn (4) between а\ь and аьк 
q the ratio of the heat required to vapourise 

1 mole of the feed to the molar latent heat 

of the feed 

Amin the minimum reflux ratio 

n number of components 

Subscr ipts 

F feed 

Ik light key 
hk heavy key 

R E F E R E N C E S 

1. Fraga, E. S-, Steffens, M. A., Bogle, L D. L., and 
Hind, A. K., An object oriented framework for process 
synthesis and optimization, Foundations of Computer-
Aided Process Design. (Malone, M. F., Trainham, J. A., 
and Camahan, В., Editors.) AIChE Symposium Series 
323 (96), 446 (2000). 

2. Laing, D. M. and Fraga, E. S., Comput. Chem. Eng. 
21, S53 (1997). 

3. Schnepper, С. A. and Stadtherr, M. A., Comput. 
Chem. Eng. 20, 187 (1996). 

4. Byrne, R. P. and Bogle, I. D. L., Ind. Eng. Chem. Res. 
39, 4296 (2000). 

5. Rathore, R. N. S.T van Wormer, K. A., and Powers, G. 
J., AIChE J. 20, 491 (1974). 

6. Moore, R. E., Interval Analysis. Prentice Hall, Engle-
wood Cliffs. New Jersey, 1966. 

7. Hansen, E., Global Optimization Using Interval Anal-
ysis. Dekker, New York, 1992. 

8. Caprani, O. and Madsen, K.ľ Computing 25,147 (1980). 
9. Fenske, M. R.T Ind. Eng. Chem. 24, 482 (1932). 

10. Underwood, A. J. V.s Chem. Eng. Prog. 44, 603 (1948). 
11. GiffilancL E R . Ind, Eng. Chem. 327 1220 (1940). 

Chem. Pap. 55(6)376—381 (2001) 381 


