Construction and Structure of Coordination Polymers Based on Tetrahedral $\mathrm{Cu}_{4} \mathrm{OBr}_{6}$ Centres Linked by Pyrazine

G. ONDREJOVIČ, A. BROŠKOVIČOVÁ, and A. KOTOČOVÁ
Department of Inorganic Chemistry, Faculty of Chemical Technology, Slovak University of Technology, SK-812 37 Bratislava

Received 5 January 1999

Abstract

A model of 1D-, 2D-, and 3D-frameworks constructed of tetrahedral centres linked by rod-like ligands according to the regularities given by diamond and lonsdaleite lattices has been developed. The composition of the 3D-framework polymer is expressed by the formula $O_{c h s} b_{[2 c h s-0.5(c h+c s)-h s]}$ $t_{[\mathrm{c}(h+s)+2 h s]}$, where c, h, and s represent the numbers of the tetrahedral centres O in three different dimensions of the 3D-framework, b and t denote the relative amounts of bridging and terminal rod-like ligands, respectively. For related sheet and chain polymers the formulas $O_{c h} b_{[1.5 c h-0.5 c-h]}$ $t_{[c h+c+2 h]}$ and $O_{c} b_{[c-1]} t_{[2 c+2]}$ have been derived, respectively. The formulas have been applied to a series of synthesized $\mathrm{Cu}_{4} \mathrm{OBr}_{6}(\mathrm{pyz})_{p}(p=2.25-3.95)$ complexes in order to describe their structure. The complex with the value of $p=3.17$ consists of chains comprising about 6 linked tetrahedral $\mathrm{Cu}_{4} \mathrm{OBr}_{6}$ centres. The values of $p=3.04$ and 2.90 correspond to sheet structures with 9 and 16 linked centres, respectively. The structures of the complexes with $p=2.41$ and 2.25 consist of 3Dframeworks. For the former complex 124 and for the latter one 503 linked tetrahedral $\mathrm{Cu}_{4} \mathrm{OBr}_{6}$ centres have been estimated.

Polymeric materials of copper complexes provide novel structures and geometries [1] which are of interest for their magnetic and electronic properties [2-5]. Pyrazine as a bridging ligand links a variety of copper coordination centres [6] to form polymeric copper complexes comprising one-dimensional chains, twodimensional sheets or three-dimensional frameworks.

There are several polymers built up of tetrahedral copper(I) centres linked by pyrazine, an infinite chain [7], infinite sheets [8, 9] with hexanuclear cop$\operatorname{per}(\mathrm{I})$ units of a chair-type cyclohexane-like structure, and an infinite 3D-framework with a diamond lattice [10, 11]. The tetranuclear $\mathrm{Cu}_{4} \mathrm{OX}_{6} \mathrm{~L}_{4}$ complexes [12, 13] contain tetrahedral centres $\mathrm{Cu}_{4} \mathrm{OX}_{6}$ based on a bridging central oxygen atom bound to four tetrahedrally arranged copper(II) atoms. Each copper(II) atom adopts in the same time the trigonal bipyramidal coordination with one terminal axial position occupied by ligand L. When the terminal axial positions are occupied by rod-like pyrazine ligands, then the linking of tetrahedral centres can occur under the formation of chains, sheets or 3D-frameworks as it is known for the above-mentioned tetrahedral pyrazine copper(I) complexes.

Recently, we have reported a series of $\mathrm{Cu}_{4} \mathrm{OBr}_{6}-$ (pyz) $)_{p}(p=2-4)$ complexes in which the tetrahedral $\mathrm{Cu}_{4} \mathrm{OBr}_{6}$ centres are linked by pyrazine ligands to form oligomeric 1D-, 2D- or 3D-frameworks depending of the mole ratio of the $\mathrm{Cu}_{4} \mathrm{OBr}_{6}$ and pyrazine reactants [14]. Experimentally determined
relative amounts of bridging b and terminal t pyrazine ligands for these complexes showed good correlation with the straight line $b=-0.5 t+2$ which is related to a single tetrahedral centre and describes the construction of diamond-related [11] structures relatively. In this work a model of linking is presented which describes the construction of diamond-related structures exactly. The model is applied to the above-mentioned oligomeric $\mathrm{Cu}_{4} \mathrm{OBr}_{6}(\mathrm{pyz})_{p}(p=2-4)$ complexes with the aim to find their dimensions and the number of the tetrahedral $\mathrm{Cu}_{4} \mathrm{OBr}_{6}$ centres linked by pyrazine.

EXPERIMENTAL

The complexes were prepared by reaction of the initial $\mathrm{Cu}_{4} \mathrm{OBr}_{6}(\mathrm{MeOH})_{4}$ complex with pyrazine in methanol-ether solution according to the procedure described elsewhere [14]. The composition of the complexes calculated from the analytical data is presented in Table 5.

Infrared spectra of the $\mathrm{Cu}_{4} \mathrm{OBr}_{6}(\mathrm{pyz})_{p}$ complexes were recorded with Philips Analytical PU 9800 FTIR and Nicolet Magna 750 spectrophotometers in Nujol mull and polyethylene matrix.

The bands of infrared spectra at $\tilde{\nu}=484 \mathrm{~cm}^{-1}$ and $459 \mathrm{~cm}^{-1}$ for bridging and terminal pyrazine ligands, respectively, have been used for determination of relative amounts of bridging b and terminal t pyrazine ligands in the $\mathrm{Cu}_{4} \mathrm{OBr}_{6}(\mathrm{pyz})_{p}$ complexes [14]. The peak areas P_{b} and P_{t} were obtained by a baseline method
[15] and processed with Omnic software [16].
The relative amounts of the total pyrazine (p) in the $\mathrm{Cu}_{4} \mathrm{OBr}_{6}(\mathrm{pyz})_{p}$ complexes were calculated from the elemental analysis and those of bridging (b) and terminal (t) pyrazine (Table 5) using the equations

$$
\begin{gather*}
b+t=p \tag{1}\\
\left(P_{b} / P_{t}\right)=\left(A_{b} / A_{t}\right)(b / t) \tag{2}\\
\left(P_{b} / P_{t}\right)=\left(A_{b} / A_{t}\right)(2-0.5 p) /(p-2) \tag{3}\\
b=-0.5 t+2 \tag{4}
\end{gather*}
$$

The ratio of the integrated absorption coefficients A_{b} / A_{t} was determined by means of eqn (3) which was derived using eqns (1), (2), and (4). It was found that the relative amounts of bridging and terminal pyrazine ligands in the $\mathrm{Cu}_{4} \mathrm{OBr}_{6}(\mathrm{pyz})_{p}$ complexes satisfy eqn (4) that was derived for the diamond-related structures [14].

A plot of P_{b} / P_{t} vs. $(2-0.5 p) /(p-2)$ presented in Fig. 1 shows a straight line $\left(P_{b} / P_{t}\right)=0.580(2-$ $0.5 p) /(p-2)+0.004$ with the slope of $A_{b} / A_{t}=0.580$ ($R^{2}=0.9984$) and a negligible deviation from the coordinate origin.

RESULTS AND DISCUSSION

The model of linking applied to the $\mathrm{Cu}_{4} \mathrm{OBr}_{6}(\mathrm{pyz})_{p}$ complexes is based on an idea that small (elemental) oligomeric structures (chains, sheets, and 3Dframeworks) grow attaching the coordination centres by linking rod-like ligands in arbitrary of the three dimensions to reach infinite structures according to the regularities which are determined by a given lattice.

A 3D-framework based on diamond or lonsdaleite
lattices constructed of tetrahedral coordination centres by linking procedure can be described by three parameters, c, h, and s. Each of these parameters represents the number of the tetrahedral centres in three different dimensions of the 3D-framework.

The product chs gives the total number of tetrahedral centres in the 3D-framework. At the same time c signifies the number of tetrahedral centres in a chain, h is the number of the chains linked into a sheet, and s represents the number of the sheets stacked by linking into a 3D-framework. The total number of tetrahedral centres in the 3D-framework equals also the sum of external centres which are in the planes $c h, c s, h s$ and internal centres which are placed inside the 3Dframework and their number is given by the product $(c-2)(h-2)(s-2)$. While all internal tetrahedral centres are of the same linking mode $\mathrm{L}_{4}\left(O b_{4}\right)$, the external centres are represented by different linking modes $\mathrm{L}_{3}\left(\mathrm{Ob}_{3} t\right), \mathrm{L}_{2}\left(\mathrm{Ob}_{2} \mathrm{t}_{2}\right)$, and $\mathrm{L}_{1}\left(O b t_{3}\right)$. These linking modes are ordered in the planes with a certain periodicity, which is driven by the lattice regularities and depends also on even and odd values of c, h, and s parameters. The numbers of the individual linking modes in the planes $c h, c s$, and $h s$ as a function of c, h, and s parameters have been expressed for all combinations of even $c_{\mathrm{e}}, h_{\mathrm{e}}, s_{\mathrm{e}}$ and odd $c_{\mathrm{o}}, h_{\mathrm{o}}, s_{\mathrm{o}}$ values of c, h, and s parameters.

The expressions for the total sum of the individual linking modes for 3D-framework described by c, h, and s parameters are presented in Table 1.

The differences in the constructions of diamond and lonsdaleite lattices are termed submodifications S. While all combinations of even and odd values involving even values of parameter c_{e} give the same submodification S_{1}, the combinations involving odd values of parameter c_{0} produce different submodifications S_{1}, $\mathrm{S}_{2}, \mathrm{~S}_{3}, \mathrm{~S}_{4}$, and S_{5}. However, the averaged numbers of

Table 1. Number of Linking Modes for 3D-Frameworks with Diamond or Lonsdaleite Lattices and c, h, and s Dimensions

Combination of even and odd c, h, s	Submodification S	Number of linking modes			
		L_{1}	L_{2}	L_{3}	L_{4}
$\begin{aligned} & c_{e}-h_{e}-s_{e} \\ & c_{e}-h_{e}-s_{o} \\ & c_{e}-h_{o}-s_{e} \\ & c_{e}-h_{o}-s_{o} \\ & c_{o}-h_{o}-s_{o} \\ & c_{o}-h_{e}-s_{e}{ }^{a} \end{aligned}$	S_{1}	2	$c+2(h+s)-6$	$c(h+s-2)+2(h-2)(s-2)-2$	chs $-c(h+s-1)-2(h-1)(s-1)$
$\begin{aligned} & c_{o}-h_{o}-s_{e} \\ & c_{o}-h_{e}-s_{o}{ }^{a} \end{aligned}$	$\begin{gathered} \mathrm{S}_{2} \\ \mathrm{~S}_{3} \\ \left(\mathrm{~S}_{2}+\mathrm{S}_{3}\right) / 2 \end{gathered}$	4 0 2	$\begin{aligned} & c+2(h+s)-9 \\ & c+2(h+s)-3 \\ & c+2(h+s)-6 \end{aligned}$	$\begin{aligned} & c(h+s-2)+2(h-2)(s-2)-1 \\ & c(h+s-2)+2(h-2)(s-2)-3 \\ & c(h+s-2)+2(h-2)(s-2)-2 \end{aligned}$	$\begin{aligned} & c h s-c(h+s-1)-2(h-1)(s-1) \\ & c h s-c(h+s-1)-2(h-1)(s-1) \\ & c h s-c(h+s-1)-2(h-1)(s-1) \end{aligned}$
$\begin{aligned} & c_{o}-h_{e}-s_{o}{ }^{b} \\ & c_{o}-h_{e}-s_{e}{ }^{b} \end{aligned}$	$\begin{gathered} \mathrm{S}_{4} \\ \mathrm{~S}_{5} \\ \left(\mathrm{~S}_{4}+\mathrm{S}_{5}\right) / 2 \end{gathered}$	4 0 2	$\begin{gathered} c+2 h+4 s-11 \\ c+2 h-1 \\ c+2(h+s)-6 \end{gathered}$	$\begin{gathered} c(h+s-2)+2(h-2)(s-2)-3 s+2 \\ c(h+s-2)+2(h-2)(s-2)+3 s-6 \\ c(h+s-2)+2(h-2)(s-2)-2 \end{gathered}$	$\begin{gathered} c h s-c(h+s-1)+2(h-h s)+3 s-3 \\ c h s-c(h+s-1)+2(h-h s)+s-1 \\ c h s-c(h+s-1)-2(h-1)(s-1) \end{gathered}$

[^0]Table 2. Number of Bridging and Terminal Ligands in Linking Modes for 3D-Framework of S_{1}-Submodification with Dimensions c, h, and s

Linking mode	Number of bridging ligands	Number of terminal ligands
L_{1}	0.5×2	3×2
$\mathrm{~L}_{2}$	$c+2(h+s)-6$	$2[c+2(h+s)-6]$
L_{3}	$1.5[c(h+s-2)+2(h-2)(s-2)-2]$	$c(h+s-2)+2(h-2)(s-2)-2$
$\mathrm{~L}_{4}$	$2[c h s-c(h+s-1)-2(h-1)(s-1)]$	0
$\mathrm{~L}_{1}+\mathrm{L}_{2}+\mathrm{L}_{3}+\mathrm{L}_{4}$	$2 c h s-0.5(c h+c s)-h s$	$c(h+s)+2 h s$

Table 3. Number of Bridging and Terminal Ligands for 3D-Frameworks of $S_{1}-S_{5}$-Submodifications with Dimensions c, h, and s

Submodification	Number of bridging ligands	Number of terminal ligands
S_{1}	$2 c h s-0.5(c h+c s)-h s$	$c(h+s)+2 h s$
$\mathrm{~S}_{2}$	$2 c h s-0.5(c h+c s)-h s-0.5$	$c(h+s)+2 h s+1$
$\mathrm{~S}_{3}$	$2 c h s-0.5(c h+c s)-h s+0.5$	$c(h+s)+2 h s-1$
$\mathrm{~S}_{4}$	$2 c h s-0.5(c h+c s)-h s-0.5 s$	$c(h+s)+2 h s+s$
$\mathrm{~S}_{5}$	$2 c h s-0.5(c h+c s)-h s+0.5 s$	$c(h+s)+2 h s-s$

Table 4. Number of Bridging and Terminal Ligands for Sheet $\mathrm{M}_{1}-\mathrm{M}_{3}$-Modifications with Dimensions c and h

Modification	Number of bridging ligands	Number of terminal ligands
M_{1}	$1.5 c h-0.5 c-h$	$c(h+1)+2 h$
M_{2}	$1.5 c h-0.5 c-h+0.5$	$c(h+1)+2 h-1$
M_{3}	$1.5 c h-0.5 c-h-0.5$	$c(h+1)+2 h+1$

linking modes for the submodifications S_{2} and S_{3} as well as for S_{4} and S_{5} are the same as for the submodification S_{1}. If the submodifications S_{2}, S_{3}, S_{4}, and S_{5} have the same weight in the linking procedure, then the linking characteristics of the submodification S_{1} can be considered to have a nature of overall linking process and may be accepted for further calculations.

From the relations defining the number of the linking modes for 3D-framework of the submodification S_{1} with dimensions c, h, and s and using the data of Table 2 the formula describing the composition of the oligomeric or infinite 3D-framework can be derived. By similar procedure the formulas for the submodifications $\mathrm{S}_{2}-\mathrm{S}_{5}$ can also be derived (Table 3).

When the number of the stacked sheets $s=1$, the formula (5) is transformed to the expression (6), which describes the composition of the 2D-framework. The formula describing the composition of the 1Dframework (7) can be obtained when the number of the linked sheets $s=1$ and the number of the linked chains $h=1$.

$$
\begin{gather*}
O_{c h s} b_{[2 c h s-0.5(c h+c s)-h s]} t_{[c(h+s)+2 h s]} \tag{5}\\
O_{c h} b_{[1.5 c h-0.5 c-h]} t_{[c h+c+2 h]} \tag{6}\\
O_{c} b_{[c-1]} t_{[2 c+2]} \tag{7}
\end{gather*}
$$

The 2D-structure derived for the diamond-related lattice (when $s=1$) can exist in three modifications as shown in Table 4. Application of the procedure presented above for 3D-framework submodifications to the 2D-modifications gives the formula (6).

The tetrahedral $\mathrm{Cu}_{4} \mathrm{OBr}_{6}$ centres present in the structure of the polymeric $\mathrm{Cu}_{4} \mathrm{OBr}_{6}(\mathrm{pyz})_{p}$ complexes are indicated by a diagnostic band of the tetrahedral OCu_{4} core vibration in the region $536-544 \mathrm{~cm}^{-1}$ [14] and by a diagnostic $d-d$ band at about $11500 \mathrm{~cm}^{-1}$ and a shoulder at about $13000 \mathrm{~cm}^{-1}$ characterizing the trigonal bipyramidal coordination of copper(II) atoms [17]. The linking of the tetrahedral $\mathrm{Cu}_{4} \mathrm{OBr}_{6}$ centres by pyrazine to form polymeric structures of the $\mathrm{Cu}_{4} \mathrm{OBr}_{6}(\mathrm{pyz})_{p}$ complexes is indicated by the bands in infrared spectra at $484 \mathrm{~cm}^{-1}$ and $459 \mathrm{~cm}^{-1}$ for bridging and terminal pyrazine ligands, respectively [14]. The absorbances of these bands vary with the extent of linking pyrazine. They have been used for determination of the relative amounts of bridging and terminal pyrazine ligands and the subsequent indirect structural characterization of the $\mathrm{Cu}_{4} \mathrm{OBr}_{6}(\mathrm{pyz})_{p}$ complexes as those having diamond-related lattice. The procedure of the bridging and terminal pyrazine ligand determination based on absorbances has been corrected by taking the relevant peak areas. The ratio of the integrated absorption coefficients obtained graphically using peak areas has been found to be

Fig. 1. Plot of P_{b} / P_{t} vs. $(2-0.5 p) /(p-2)$ for determination of integrated absorption coefficient ratio $A_{b} / A_{t}=0.508$.

Table 5. Peak Area (P), Relative Amounts of Total (p), Bridging (b), Terminal (t) Pyrazine, and Wavenumbers of $\mathrm{Cu}_{4} \mathrm{O}$ Core Vibration for $\mathrm{Cu}_{4} \mathrm{OBr}_{6}(\text { pyz })_{p}$ Complexes

Complex	Composition	P_{b} / cm^{-1}	$\mathrm{P}_{t} / \mathrm{cm}^{-1}$	p	b	t	$\tilde{\nu}\left(\mathrm{Cu}_{4} \mathrm{O}\right) / \mathrm{cm}^{-1}$
I	$\mathrm{Cu}_{4} \mathrm{OBr}_{6}(\mathrm{pyz})_{3.95}$	0	3.238	3.95	0	3.95	536
$I I$	$\mathrm{Cu}_{4} \mathrm{OBr}_{6}(\mathrm{pyz})_{3.75}$	0.063	3.875	3.75	0.11	3.64	536
$I I I$	$\mathrm{Cu}_{4} \mathrm{OBr}_{6}(\mathrm{pyz})_{3.52}$	0.066	0.821	3.52	0.43	3.09	536
$I V$	$\mathrm{Cu}_{4} \mathrm{OBr}_{6}(\mathrm{pyz})_{3.46}$	0.595	4.840	3.46	0.59	2.87	536
V	$\mathrm{Cu}_{4} \mathrm{OBr}_{6}(\mathrm{pyz})_{3.17}$	0.392	1.906	3.17	0.83	2.34	536
$V I$	$\mathrm{Cu}_{4} \mathrm{OBr}_{6}(\mathrm{pyz})_{3.04}$	0.670	2.275	3.04	1.01	2.03	538
$V I I$	$\mathrm{Cu}_{4} \mathrm{OBr}_{6}(\mathrm{pyz})_{2.90}$	0.832	2.202	2.90	1.13	1.77	538
$V I I I$	$\mathrm{Cu}_{4} \mathrm{OBr}_{6}(\mathrm{pyz})_{2.65}$	0.794	1.341	2.65	1.34	1.31	540
$I X$	$\mathrm{Cu}_{4} \mathrm{OBr}_{6}(\mathrm{pyz})_{2.4}$	1.043	0.885	2.41	1.60	0.81	544
X	$\mathrm{Cu}_{4} \mathrm{OBr}_{6}(\mathrm{pyz})_{2.25}$	0.191	0.095	2.25	1.75	0.50	544

$A_{b} / A_{t}=0.580$ (Fig. 1). This value is higher than the previously used molar absorption coefficient ratio $\varepsilon_{b} / \varepsilon_{t}=0.483$ which was calculated for approximately dimeric $\mathrm{Cu}_{4} \mathrm{OBr}_{6}$ (pyz) ${ }_{3.52}$ complex [14].

The number of the terahedral $\mathrm{Cu}_{4} \mathrm{OBr}_{6}$ centres linked by pyrazine in the chain oligomer, c, can be directly calculated using the one-parameter formula (7). It can be expected that the oligomer growth is controlled by the diamond lattice and none of the three dimensions is preferred. Therefore, the transformation of the three-parameter expression (5) to one-parameter formula of the cube is justified ($c=h=s=e$). Similarly, the expression (6) generally derived for 2Dframeworks can be transformed for square sheet when $c=h=d$. Then, the number of the terahedral $\mathrm{Cu}_{4} \mathrm{OBr}_{6}$ centres linked by pyrazine in the chain (parameter c), square sheet (parameter d), and cubic 3Dframework (parameter e) can be calculated by eqns (8), (9), and (10), respectively.
$(b / t)_{c}=(c-1) /(2 c+2)$
$(b / t)_{c}\langle 1 / 6 ; 1 / 2\rangle(8)$
$(b / t)_{d}=[1.5 d(d-1)] /[d(d+3)](b / t)_{d}\langle 3 / 10 ; 3 / 2\rangle(9)$
$(b / t)_{e}=\left[2 e^{2}(e-1)\right] / 4 e^{2}$

$$
(b / t)_{e}\langle 8 / 16 ; \infty\rangle(10)
$$

The limiting values of the b / t ratio are determined by the composition of the infinitive diamond-related $3 \mathrm{D}-, 2 \mathrm{D}$-, and 1D-structures as well as by those of the related smallest 3D-, 2D-, and 1D-structural elements. From these limiting b / t data it follows that some of the b / t values describe the composition of the $\mathrm{Cu}_{4} \mathrm{OBr}_{6}$ (pyz) $)_{p}$ complexes with different structural dimensions, e.g. the interval of the b / t values for 2D-frameworks is partially coincident with those of 1D- or 3D-frameworks. Then, only the noncoincident b / t values provide the unambiguous dimensions of the oligomers.

The $\mathrm{Cu}_{4} \mathrm{O}$ core vibration is slightly affected by the structural dimensions of the $\mathrm{Cu}_{4} \mathrm{OBr}_{6}(\mathrm{pyz})_{p}$ complexes. For the structurally different oligomers the slightly different but regular changes of the $\mathrm{Cu}_{4} \mathrm{O}$ core vibration wavenumbers have been repeatedly ob-

Table 6. Estimated Structure and Number of Tetrahedral $\mathrm{Cu}_{4} \mathrm{OBr}_{6}$ Centres Linked by Pyrazine for Oligomers of $\mathrm{Cu}_{4} \mathrm{OBr}_{6}\left(\mathrm{pyz}_{\mathrm{p}}\right)_{p}$ Complexes

			Number of linking modes				
Complex	b / t	Number of linked centres	L_{1}	$\mathrm{~L}_{2}$	$\mathrm{~L}_{3}$	$\mathrm{~L}_{4}$	Structure of oligomer
III	0.1406	2	2	-	-	-	Chain
$I V$	0.2078	2.5	2	0.5	-	-	Chain
V	0.3545	6	2	4	-	-	Chain
$V I$	0.4957	9	2	5	2	-	Sheet
$V I I$	0.6397	16	2	8	6	-	Sheet
$V I I I^{\text {a }}$	1.0265	94	2	25	67	-	Sheet
		28	2	9	13	4	3D-Framework
$I X$	1.9936	124	2	19	56	47	3D-Framework
X	3.4762	503	2	34	179	88	3D-Framework

a) Estimated either for sheet or 3D-framework oligomers.

Fig. 2. Relationship between wavenumbers of the $\mathrm{Cu}_{4} \mathrm{O}$ core vibration and the relative amount of bridging pyrazine, b, in $\mathrm{Cu}_{4} \mathrm{OBr}_{6}(\mathrm{pyz})_{p}$ oligomers.
served. The plot of the wavenumbers $v s$. the amount of the bridging pyrazine ligand b in the $\mathrm{Cu}_{4} \mathrm{OBr}_{6}$ (pyz) p complexes shows (Table 5, Fig. 2) the constant values at $\tilde{\nu}=536 \mathrm{~cm}^{-1}$ for the complexes $I-V$ (chain oligomers, $b=0-1.00$), at $\tilde{\nu}=538 \mathrm{~cm}^{-1}$ for the complexes VI, VII (sheet oligomers, $b=1.00-1.50$), and at $\tilde{\nu}=544 \mathrm{~cm}^{-1}$ for the complexes $I X$ and X (3Doligomers, $b=1.50-2.00$). However, for the complex VIII in the sheet oligomer region the wavenumber of the $\mathrm{Cu}_{4} \mathrm{O}$ core vibration $\tilde{\nu}=540 \mathrm{~cm}^{-1}$ has been observed. The structure of this oligomer consists probably of both 2D- and 3D-frameworks. Generally, the data in Fig. 2 indicate a consecutive structural formation of the oligomers. The $\mathrm{Cu}_{4} \mathrm{OBr}_{6}(\mathrm{pyz})_{p}$ complexes can be structurally characterized as oligomers with the estimated oligomeric dimensions as presented in Table 6.

Supplementary material available. Supplementary
material on periodicity of the linking modes is deposited with the authors.

Acknowledgements. We thank the Slovak Grant Agency for financial support (Grant No. 95/5195/201).

REFERENCES

1. Hathaway, B. J., in Comprehensive Coordination Chemistry, Vol. 15, p. 533. (Wilkinson, G., Editor.) Pergamon Press, London, 1988.
2. Eckberg, R. P. and Hatfield, W. E., J. Chem. Soc., Dalton Trans. 1975, 616.
3. Brown, D. B., Hall, J. W., Helis, H. M., Walton, E. G., Hodgson, D. J., and Hatfield, W. E., Inorg. Chem. 16, 2675 (1977).
4. Dariet, J., Haddad, M. S., Duesler, E. N., and Hendrickson, D. N., Inorg. Chem. 18, 2679 (1979).
5. Julve, M., De Munno, G., Bruno, G., and Verdaguer, M., Inorg. Chem. 27, 3160 (1988).
6. Steel, P. J., Coord. Chem. Rev. 106, 221 (1990).
7. Otieno, T., Rettig, S. J., Thompson, R. C., and Trotter, J., Can. J. Chem. 67, 1964 (1989).
8. Kitagawa, S., Munakata, M., and Tanimura, T., Inorg. Chem. 31, 1714 (1992).
9. Halasyamani, P., Heier, K. R., Willis, M. J., and Stern, Ch. L., Z. Anorg. Allg. Chem. 622, 479 (1996).
10. Otieno, T., Rettig, S. J., Thompson, R. C., and Trotter, J., Inorg. Chem. 32, 1607 (1993).
11. Hoskins, B. F. and Robson, R., J. Am. Chem. Soc. 112, 1546 (1990).
12. Bertrand, J. A. and Kelley, J. A., J. Am. Chem. Soc. 88, 4746 (1966).
13. Jorík, V., Koman, M., Makáňová, D., Mikloš, D., Broškovičová, A., and Ondrejovič, G., Polyhedron 15, 3129 (1996).
14. Broškovičová, A. and Ondrejovič, G., Chem. Papers 52, 16 (1998).
15. Horák, M. and Vítek, A., Zpracování a interpretace vibračnich spekter. (Processing and Interpretation of Infrared Spectra.) P. 269. Nakladatelství technické literatury (Publishers of Technical Literature), Prague, 1980.
16. OMNIC, FTIR Software, Nicolet Analytical Instruments, Madison WI 53711, 1994.
17. tom Dieck, H., Inorg. Chim. Acta 7, 397 (1973).

[^0]: a) Valid only for diamond lattice. b) Valid only for lonsdaleite lattice.

