Synthesis and Biological Activity of Some 2-Substituted Quinazolin-4-ones

^aK. ŠPIRKOVÁ, ^aŠ. STANKOVSKÝ, ^aA. MRVOVÁ, and ^bĽ. ČIPÁK

^aDepartment of Organic Chemistry, Faculty of Chemical Technology, Slovak University of Technology, SK-812 37 Bratislava

^bDepartment of Biochemistry and Microbiology, Faculty of Chemical Technology, Slovak University of Technology, SK-812 37 Bratislava

Received 16 July 1998

The nonclassical antifolates have been prepared by nucleophilic substitution of bromine in 2bromomethyl-3*H*-quinazolin-4-one by nitrogen and oxygen nucleophiles. IR and ¹H NMR spectra, ¹³C NMR data of selected compounds, basic antibacterial and cytotoxic activities are presented.

Quinazoline derivatives are used in medicine and agriculture because of their wide-range biological properties. As documented in the literature, many derivatives act as anticancer active agents and antimetabolites from the group of analogues of folic acid. They are antifolate thymidylate synthase (TS) inhibitors [1].

The present research is interested in an alternative class of nonclassical lipophilic TS inhibitors, which are not substrates for folylpolyglutamate synthetase, but retain their cytotoxic activity [2, 3].

In view of the above-mentioned facts, our interest was focused on the utilization of the 2-bromomethyl-3H-quinazolin-4-one (II) for the synthesis of potentially cytotoxic nonclassical antifolates. The target compounds were prepared by nucleophilic substitution of bromine in the bromomethyl group of II by nitrogen and oxygen nucleophiles. Characterization of prepared compounds is given in Table 1. Spectral data are presented in Tables 2 and 3. For selected derivatives the spectral data were supplemented by $^{13}\mathrm{C}$ NMR analyses.

The study of biological properties showed certain antibacterial and cytotoxic activity of some of prepared derivatives. The widest antibacterial effect has been manifested by the derivative II, which was effective against S. aureus, B. subtilis, and E. coli. The IC₅₀ value for P. aeruginosa was 2.94 times lower than the corresponding value for ampicillin. The concentration 100 μ g cm⁻³ of this derivative exerted a bacteriostatic effect on S. aureus, B. subtilis, and E. coli.

From the results of cytotoxic study it is evident that the highest cytotoxic activities expressed by IC₅₀ values were shown by compounds $I (< 0.125 \ \mu g \ cm^{-3})$, $III (< 0.125 \ \mu g \ cm^{-3})$, $IIIj (0.068 \ \mu g \ cm^{-3})$, and $IIIi (1.62 \ \mu g \ cm^{-3})$. Certain cytotoxic efficacy was exhibited by compounds IIIk (4.24 $\mu g \ cm^{-3})$, $IIIg (8.31 \ \mu g \ cm^{-3})$, and $IIIb (13.77 \ \mu g \ cm^{-3})$. The weakest activity was found with derivatives $IIIe (>100 \ \mu g \ cm^{-3})$ and $IIId (>100 \ \mu g \ cm^{-3})$.

I—III

I R = H II R = Br IIIa R = 1-morpholinyl IIIb R = 1-piperidinyl IIIc R = methoxy IIId R = ethoxy IIIe R = isopropoxy IIIF R = butoxy

IIIg R = phenoxy

- IIIh R = 4-nitrophenoxy
- IIIi R = 2-nitrophenoxy
- IIIj R = N, N-dimethylamino
- IIIk R = N-(2-hydroxyethyl)amino
- IIII R = N-(methoxycarbonylmethyl)amino
- IIIm R = N-(1,3-dicarboxypropyl)amino

2-SUBSTITUTED QUINAZOLIN-4-ONES

Table 1. Characterization of the Prepared Compounds I-II	Table	1.	Characterization	of	the	Prepared	Compounds	I—	III
--	-------	----	------------------	----	-----	----------	-----------	----	-----

Compound			w _i (calc.)/% w _i (found)/%		Yield	M.p.	
	Formula <i>M</i> r	С	н	N	%	°C	
Ι	$C_9H_8N_2O$	67.49	5.03	17.49	74	243-245	
	160.17	67.33	4.98	17.30			
II	$C_9H_7BrN_2O$	45.22	2.95	11.72	65	235-240	
	239.07	45.03	2.90	11.65			
IIIa	$C_{13}H_{15}N_{3}O_{2}$	63.66	6.16	17.13	78	192—195	
	245.28	63.44	6.08	17.02			
IIIb	$C_{14}H_{17}N_3O$	69.11	7.04	17.27	28	174-175	
	243.31	68.92	7.00	17.15			
IIIc	$C_{10}H_{10}N_2O_2$	63.15	5.30	14.73	88	218-223	
	190.20	62.97	5.21	14.56			
IIId	$\mathrm{C_{11}H_{12}N_2O_2}$	64.69	5.92	13.72	60	180—184	
	204.23	64.49	5.87	13.52			
IIIe	$C_{12}H_{14}N_2O_2$	66.04	6.47	12.84	33	260-264	
	218.25	65.89	6.33	12.67			
IIIf	$C_{13}H_{16}N_2O_2$	67.22	6.94	12.06	46	182—185	
	232.28	67.03	6.89	11.96			
IIIg	$C_{15}H_{12}N_2O_2$	71.42	4.79	11.10	85	241-243	
	252.27	71.35	4.63	10.87			
IIIh	$C_{15}H_{11}N_{3}O_{4}$	60.61	3.73	14.14	50	142—146	
	297.27	60.55	3.69	13.88			
IIIi	$C_{15}H_{11}N_{3}O_{4}$	60.61	3.73	14.14	43	178—181	
	297.27	60.53	3.68	13.87			
IIIj	$C_{11}H_{13}N_{3}O$	65.01	6.45	20.67	90	163—166	
	203.24	64.85	6.36	20.42			
IIIk	$\mathrm{C_{11}H_{13}N_3O_2}$	60.26	5.98	19.70	41	221-225	
	219.24	59.97	5.73	19.50			
IIIl	$C_{12}H_{13}N_3O_3$	58.29	5.30	16.99	52	193—196	
	247.25	58.03	5.21	16.77			
IIIm	$C_{14}H_{15}N_{3}O_{5}$	55.08	4.95	13.76	49	215-219	
	305.29	54.89	4.86	13.53			

The comparison of the quinazolinones structure and their cytotoxic effect showed that the most active derivatives were substituted in the pyrimidine ring of quinazolinone skeleton by methyl, bromomethyl, and dimethylaminomethyl groups. Substitution of bromine by ethoxy, isopropoxy or nitrophenoxy group caused a considerable decrease of activity.

The aforementioned results show (Table 4) that derivatives I, II, IIIi, and IIIj can be included among the potential anticancer drugs.

EXPERIMENTAL

IR spectra were recorded on a Philips PU 9800 FTIR instrument using the KBr technique. ¹H NMR spectra were taken on a Tesla BS 587A spectrometer (80 MHz) and ¹³C NMR spectra on a Varian VXR-300 spectrometer in hexadeuterodimethyl sulfoxide using tetramethylsilane as internal standard.

The starting compounds were prepared according to the literature: 2-methyl-3H-quinazolin-4-one [4] and 2-bromomethyl-3H-quinazolin-4-one [5].

The antibacterial activity of prepared quinazoline derivatives was evaluated using the G^+ bacteria

Table 2. IR Spectral Data of Compounds I-III

a	$ ilde{ u}/\mathrm{cm}^{-1}$						
Compound	ν(C==0)	ν(C=N)	ע(NH)				
I	1686	1617	2980				
II	1682	1608	3021				
IIIa	1674	1607	3088				
IIIb	1678	1611	2938				
IIIc	1667	1607	3000				
IIId	1707	1603	3023				
IIIe	1705	1597	3027				
IIIf	1713	1603	3021				
IIIg	1716	1601	3040				
IIIh	1726	1593	2979				
		1514*	1338**				
IIIi	1684	1606	3424				
		1475*	1344**				
IIIj	1677	1610	3337				
IIIk	1672	1612	3043				
			3427***				
IIII	1709	1599	3024				
	1662						
IIIm	1682	1608	3017				
	1647						

 $*\nu_{as}(NO_2), **\nu_s(NO_2), ***\nu(OH).$

Table 3. ¹H NMR Data of Compounds I-III

Compound	δ_{i}							
I	2.30 (s, 3H, CH ₃), 7.28-8.09 (m, 4H, H _{arom}), 11.95 (bs, 1H, NH)							
II	4.35 (s, 2H, CH ₂), 7.39–8.11 (m, 4H, H _{arom}), 12.44 (bs, 1H, NH)							
IIIa	3.39 (s, 2H, CH ₂), 2.95–3.55 (m, 8H, Mo), 7.33–8.11 (m, 4H, H _{arom}), 11.63 (bs, 1H, NH)							
IIIb	1.39–2.40 (m, 10H, Pi), 3.34 (s, 2H, CH ₂), 7.34–8.10 (m, 4H, H _{arom})							
IIIc	3.28 (s, 3H, CH ₃), 4.13 (s, 2H, CH ₂), 7.02–7.97 (m, 4H, H _{arom})							
IIId	1.15 (t, 3H, CH ₃), 3.59 (q, 2H, OCH ₂), 4.43 (s, 2H, CH ₂ O), 7.46–8.15 (m, 4H, H _{arom})							
IIIe	1.10 (d, 3H, CH ₃); 1.17 (d, 3H, CH ₃), 2.67 (m, 1H, CH), 4.52 (s, 2H, CH ₂), 7.52–8.16 (m, 4H, H _{arom})							
IIIf	1.16 (t, 3H, CH ₃), $1.27-1.60$ (m, 4H, $2 \times CH_2$), 3.52 (t, 2H, OCH ₂), 4.30 (s, 2H, CH ₂ O), $7.48-8.14$ (m, 4H, H _{arom})							
IIIg	5.14 (s, 2H, CH ₂), 7.12–8.32 (m, 9H, H _{arom})							
IIIh	5.32 (s, 2H, CH ₂), 6.88–8.23 (m, 8H, H _{arom})							
IIIi	5.27 (s, 2H, CH ₂), 7.11–8.10 (m, 8H, H _{arom})							
IIIj	2.46; 2.50 (2s, 6H, $2 \times CH_3$), 3.69 (s, 2H, CH ₂), 7.32–8.12 (m, 4H, H _{arom})							
IIIk	2.55 (t, 2H, NCH ₂), 3.30 (t, 2H, CH ₂ O), 3.62 (s, 2H, CH ₂ N), 7.29-8.07 (m, 4H, H _{arom})							
III	2.30 (s, 2H, NCH ₂), 3.68 (s, 2H, CH ₂ N), 3.75 (s, 3H, OCH ₃), 7.30-8.02 (m, 4H, H _{arom}), 9.09 (bs, 1H, NH)							
IIIm	2.07 (m, 2H, CH- <u>CH</u> ₂), 2.25 (m, 2H, CH ₂ -CO), 3.92 (s, 2H, CH ₂ N), 4.34 (t, 1H, CH-CO), 7.51-8.11 (m, 4H, H _{aro}							

Table 4. Biological Activity of the Compounds $I-III^b$

Compound	$ ho/(\mu { m g~cm^{-3}})$									
	S. aureus		B. subtilis		P. aeruginosa		E. coli		HeLa	
	IC ₅₀	MIC	IC ₅₀	MIC	IC ₅₀	MIC	IC ₅₀	MIC	IC ₅₀	MIC
I	>500	>500	>500	>500	>500	>500	>500	>500	< 0.125	0.125
II	15.38	100°	28.6	100 ^c	170.0	>500	24.22	100 ^c	< 0.125	0.125
IIIa	>500	>500	>500	>500	>500	>500	>500	>500	38.74	> 100
IIIb	>500	>500	>500	>500	>500	>500	>500	>500	13.77	> 100
IIIc	>500	>500	>500	>500	>500	>500	>500	>500	61.23	87.60
IIId	>500	>500	>500	>500	>500	>500	>500	>500	> 100	$\gg 100$
IIIe	>500	>500	>500	>500	>500	>500	>500	>500	> 100	$\gg 100$
IIIf	>500	>500	>500	>500	>500	>500	>500	>500	75.69	> 100
IIIg	>500	>500	>500	>500	>500	>500	>500	>500	8.31	18.90
IIIh	>500	>500	>500	>500	>500	>500	>500	>500	100	$\gg 100$
IIIi	445.7	>500	>500	>500	>500	>500	>500	>500	1.62	59.80
IIIj	>500	>500	>500	>500	>500	>500	>500	>500	0.068	12.50
IIIk	>500	>500	>500	>500	>500	>500	>500	>500	4.24	25.00
IIII	>500	>500	>500	>500	>500	>500	>500	>500	52.99	> 100
IIIm	>500	>500	>500	>500	>500	>500	>500	> 500	69.72	> 100
AMP	0.015	0.04^{a}	0.7	10 ^a	500	>500	0.28	1ª	-	

a) Concentration inducing a bacteriocide effect (MBC), b) concentration inducing a bacteriostatic effect, AMP - ampicillin.

Staphylococcus aureus and Bacillus subtilis; G⁻ bacteria Escherichia coli and Pseudomonas aeruginosa. Concentrations 500 μ g dm⁻³, 100 μ g dm⁻³, 10 μ g dm⁻³, 1 μ g dm⁻³, and 0.1 μ g dm⁻³ of the tested compounds were used. Chromatographically pure derivatives were dissolved in dimethyl sulfoxide; its final content never exceeded 1.0 vol. % in either control or treated samples. The antibacterial efficacy of the compounds was assayed by a microdilution method in 96-well microtitration plates [6]. To compare the antibacterial activity, ampicillin at concentrations 500 μ g dm⁻³, 100 μ g dm⁻³, 10 μ g dm⁻³, 1 μ g dm⁻³, and 0.1 μ g dm⁻³ was used as standard. The antibacterial effect was characterized by IC₅₀ values, *i.e.* the minimal concentration of a substance which inhibits bacterial growth by 50 % relative to the control, and MIC values, *i.e.* the minimal concentration of a substance which completely inhibits the bacterial growth. MIC experiments on subcultures dishes were used to assess the minimum bactericidal concentration (MBC) values. Subcultures were prepared separately in Petri dishes containing Müller—Hinton agar and incubated at 37 °C for 48 h. The MBC value was taken as the lowest concentration which showed no visible growth of bacterial colonies in the subculture dishes [7].

The cytotoxic activity of the prepared derivatives was studied on the transformed tumour cell line HeLa. A three-day culture of HeLa cells was trypsinized and was used to prepare a suspension with density 3.5×10^4 cells cm⁻³ [8]. The experiments were carried out in Leighton flasks into which 2 cm³ of the suspension were pipetted. After 24 h of static culturing at 37 °C, the substances, previously dissolved in dimethyl sulfoxide, were gradually added in seven different concentrations (in the range of 0.52—489.7 μ mol dm⁻³), 0.020 cm³ of each per culturing flask. First, the effect of the substances on cell morphology was microscopically evaluated after 48 h of incubation at 37 °C [9]. Then, the intensity of growth of the cells was evaluated by the Lowry method stating the content of total cell protein [10]. The cytotoxic activity of the derivatives was stated from inhibitory concentrations IC₅₀ which were read out from the toxicity curves.

Preparation of 2-X-Methyl-3*H*-quinazolin-4-ones

a) Reactions of II with Secondary Amines and Amino Alcohols Yielding IIIa, IIIb, IIIj, IIIk

A mixture of 2-bromomethyl-3*H*-quinazolin-4-one (1 g; 0.004 mol) and *N*-nucleophile (10—15 cm³) was stirred at room temperature for 24 h, then poured into water (20 cm³) and extracted with ether. The ethereal solution was dried and evaporated. The residue was crystallized from ethanol.

b) Reactions of II with the Amino Acids Yielding IIII, IIIm

A mixture of 2-bromomethyl-3*H*-quinazolin-4-one (0.5 g; 0.002 mol), corresponding amino acid (0.0035 mol), and absolute DMF (30 cm^3) was refluxed for 6 h, cooled and poured into ice-water. After standing for 12 h, water was removed *in vacuo* and the residue was crystallized from acetone or ether.

c) Reactions of II with Alcohols Yielding IIIc-IIIf

To a solution of sodium alkoxide prepared from Na (0.12 g) and the corresponding absolute alcohol (25 cm³), 2-bromomethyl-3*H*-quinazolin-4-one (1.2 g; 0.0048 mol) was added and the reaction mixture was heated over a steam bath for 1 h, cooled, shaken with 10 % HCl, and filtered. The residue was washed with H₂O and crystallized from DMF—H₂O.

d) Reactions of II with Phenolates Yielding IIIg-IIIi

A mixture of II (1.2 g; 0.0048 mol) and freshly prepared sodium phenolate (0.15 mol) in 20 cm³ of absolute ethanol was heated over the steam bath for 1 h. The next procedures were the same as in the previous case with alcohols.

¹³C NMR Data of Compounds II, IIId, IIIj, and IIIk

2-Bromomethyl-3*H*-quinazolin-4-one (*II*)

¹³C NMR spectrum, δ : 33.49 (CH₂), 121.89, 126.06, 127.37, 127.53, 134.50, 145.51 (benzene ring), 158.69 (C=N), 164.73 (C=O).

2-Ethoxymethyl-3H-quinazolin-4-one (IIId)

¹³C NMR spectrum, δ : 14.65 (CH₃), 66.49 (<u>CH₂</u>— CH₃), 67.70 (CH₂—O), 120.60, 123.54, 126.15, 127.58, 135.08, 143.24 (benzene ring), 156.79 (C=N), 160.22 (C=O).

2-(N,N-Dimethylamino)methyl-3*H*-quinazolin-4-one (*IIIj*)

¹³C NMR spectrum, δ : 46.88 (2 × CH₃), 56.40 (CH₂), 120.11, 125.55, 126.29, 126.89, 134.00, 144.50 (benzene ring), 159.01 (C=N), 164.19 (C=O).

2-[N-(2'-Hydroxyethyl)amino]methyl-3Hquinazolin-4-one (IIIk)

¹³C NMR spectrum, δ : 49.43 (NH—CH₂—CH₂), 51.60 ((HN)N=C—CH₂—NH), 61.55 (CH₂—OH), 120.20, 125.75, 126.19, 126.82, 134.03, 144.38 (benzene ring), 156.39 (C=N), 164.20 (C=O).

Acknowledgements. This study was supported by the Slovak State Committee for Scientific Research VEGA, Grant numbers 1/4207/97 and 1/6249/99.

REFERENCES

- 1. Takemura, Y. and Jackman, A. L., Anti-Cancer Drugs 8, 3 (1997).
- Webber, S., Bartlett, C., and Boritzki, T. J. Cancer Chemother. Pharmacol. 37, 509 (1996).
- O'Connor, B. M., Webber, S., Jackson, R. C., Galivan, J., and Rhee, M. S., Cancer Chemother. Pharmacol. 34, 225 (1994).
- Tomisek, A. J. and Christensen, B. E., J. Am. Chem. Soc. 67, 2112 (1945).
- Gupta, C. M., Bhaduri, A. P., and Khanna, N. M., J. Med. Chem. 11, 392 (1968).
- Hudecová, D., Jantová, S., Melník, M., and Uher, M., Folia Microbiol. 41, 473 (1996).
- Jantová, S., Labuda, J., Vollek, V., and Zastková, M., Folia Microbiol. 42, 324 (1997).
- Horáková, K., Jantová, S., Forgács, A., Perényi, T., and Lukáčová, D., Neoplasma 35, 169 (1988).
- Jantová, S. and Horáková, K., Cell Biochem. Funct. 11, 131 (1993).
- Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J., J. Biol. Chem. 143, 265 (1951).