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An effective a p p r o a c h t o t h e control of chemical reactors is described in this paper . T h e simplified 
theoret ical m a t h e m a t i c a l model of two serially connected continuous-t ime st irred t a n k reactors is 
used for s imulation of their dynamic properties. T h e control a lgori thm is based on having t h e input-
o u t p u t model of t h e controlled system. Such model is obta ined by sampling of i n p u t a n d o u t p u t 
variables and using one of recursive identification m e t h o d s . Principles of decomposi t ion are used t o 
simplify t h e i n p u t - o u t p u t model . Controller design uses t h e pole-placement m e t h o d and principles 
of decentral ization. 

Chemical reactors constitute a major part of most 
chemical processing plants. Solution of the control 
problems of chemical reactors is connected with many 
difficulties. Some of them are very complicated math­
ematical models which describe various physical and 
chemical processes in reactors. To have proper models 
for control purposes, it is necessary to accept many 
simplifying assumptions. Other problems are caused 
by the usually nonlinear dynamics of chemical reac­
tors. Some complications arise because of many inter­
nal interactions. The most important of them is the 
interaction between reaction temperature and reaction 
rate. For the control purposes, it is convenient to re­
place the theoretical mathematical model by a sim­
plified external model, which describes the connection 
between the most important input and output vari­
ables. The coefficients of external model are usually 
obtained by recursive identification from measured in­
puts and outputs. 

The goal of control consists e.g. in reaching the 
desired composition and temperature of reaction mix­
ture, optimizing control time, ensuring safety process­
ing, minimizing production expenses, etc. Today's in­
dustrial praxes prefer the stable state control [1, 2], 
when the safety processing can be ensured easily. From 
the economic point of view, the nonstable-state con­
trol can be more effective [1]. However, the more com­
plicated control algorithms have to be used in this 
case. The advanced control algorithms are the adap­
tive ones based on input-output description of the 
controlled system, see e.g. Refs. [3, 4]. Some of them 
use principles of decomposition and decentralization 
[5]. These control algorithms present a group of algo­
rithms, which enable to fulfil the control goals in a 
very attractive way. One of the last mentioned control 
algorithms is described in this paper. 

T H E O R E T I C A L 

Controlled System 

Consider that the controlled system consists of 
two serially connected nonisothermal continuous-time 
stirred tank reactors (CTSTRs) with a recycle, as it 
is shown in Fig. 1. The first reactor is the CTSTR 
with the first-order irreversible parallel exothermic re­
actions according to the scheme A —-̂  B, A —^ C. 
The second reactor is also a CTSTR with the first-
order consecutive exothermic reactions according to 
the scheme В —^ D —*-> E. fci, k2, fo, k4 are re­
action rate coefficients which differ in their numerical 
values. The goal of the control is to reach the max­
imal production of the product D or to change the 
production in the surroundings of the maximum, so 
that the control time is shorter than the step response 
of the system. Under the condition of perfect mixing, 
the dynamic mathematical model of the entire system 
was obtained by mass balances of reactants, energy 
balance of the reactant mixture and energy balance 

Fig . 1. Scheme of two serial chemical reactors with a recycle. 
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of the coolant. Many simplifications were accepted by 
modelling of considered reactors, so that the obtained 
model might be as simple as possible. Some of these 
simplifications are e.g. perfect mixing in the reactors, 
constant mass densities, volumes of reaction mixture, 
specific heat capacities, etc. The principles of obtain­
ing models of chemical reactors proper for the control 
purposes are described e.g. in [1]. The nonlinear model 
of two serially connected chemical reactors with a re­
cycle is described by fourteen differential equations in 
the form 
1st reactor 

dCAl 

dt = - ( 1 / n H-fci +fc2)CAl 
+ (tfvCAv + qRCA2)/(nqi) (1) 

— ^ - = - C B i / n + fciCAi + qRCB2/{r1q1) (2) 

- ^ - = - c c i / n + fc2CAi + qRCc2/(nq1) (3) 

dcD 

dt 

dcE 

- = - C D I / T I + qRCm/inqi) 

dt 
- = - C E i / n + qRCE2/(riqi) 

-to=-Ti/T1+qyTy/(T1ql) 

, Q R I - Qci . qRp2Cp2rp 
~\ 1 ±2 

nqipiCpi TiqipiCpi 

(4) 

(5) 

(6) 

dQ c l 

dt 

2nd reactor 

dCA2 

= -Qci/rci + <pi{Ti - Tcv)/rcl (7) 

dt 

dCB2 

dt 

dcC2 
dt 

dcp2 

dt 

dCE2 

= -CA2/T2 + CAigi/((?2 + qR)r2) (8) 

= - ( I / T 2 + k3)cB2 + cBiqi/((q2 + qR)r2) (9) 

= -CC2/T2 + cCiqi/((q2 + qR)r2) (10) 

= - ( 1 / T 2 + fc4)cD2 + CDiqi/((q2 + № ) r 2 ) 

+ fc3CB2 ( « ) 

= -СЕ2Л2 + k4cD2 + cEiqi/({q2 + qR)r2) (12) 

—L = -T IT + Q R 2 ~ Q*?2 

d * 2 r2(q2 +qR)p2CP2 

dQ c2 

dt 

1~2(q2 +qR)p2Cp2 

= -Qc2/rc2 + <f2(T2 - TCV)/TC2 

(13) 

(14) 

where 

n = Vi/qi, r2 = V2/(q2 + 4R), 

Tel = 

Ч>\ = 

KrlPcCpc K:2PcCpc / i r N 

- - - (15) qdPcCpc + Fiai 
> T C 2 

qC2PcCpc + ^2^2 

^ c l P c C p c F i Q ! _ _ qc2PcCpcF2a2 
4>2 (16) 

qdPcCpc + Ficti' qC2PcCpc + ^ 2 а 2 

Q R 1 = [ ( - A # i ) f c i + ( - Д Я 2 ) ^ ] ^ с А 1 , 

Q R 2 = [(-АЯ 3 )/:зСв2 + (-Aff4)fc4CD2]V2 (17) 

The rates of reactions per volume unit for the 1st re­
actor are 

П = fciCAi, r2 = k2cAi (18) 

and for the 2nd one 

^3 = &3CB2, T4 = &4CD2 (19) 

The rate coefficients ki are nonlinear functions of re­
action temperatures being described by the Arrhenius 
relation 

ki = kioexp ( --д^г г = 1,2,3,4 (20) 

The mathematical state model of the two reactors de­
scribed above is then a system of fourteen nonlinear 
differential equations and the controller design of such 
a system by classical methods of the control theory 
would be very complicated. The model (2—14) is used 
only for simulation and obtaining of numerical values 
of its input and output variables instead of having a 
real process. 

C O N T R O L L E R D E S I G N 

The approach described below is based on having 
the external model of the controlled process with sev­
eral inputs and several outputs with predefined order 
of dynamics. In our case, the above* described theo­
retical model is too complicated for finding a good 
controller. It is necessary to approximate it by any 
simpler model. One way how to solve the problem of 
simplification is to replace the theoretical model by an 
experimental external model which describes influence 
of measurable input variables on measurable system 
outputs, see e.g. [6]. In this case, it is necessary to pre­
define the number of inputs and outputs and also the 
sufficient order of dynamics. For the model (1—14), 
we suppose that controlled reactors are well described 
by the external model with two inputs u\(k),u2(k), 
two outputs y\(k),y2(k), and the second-order dynam­
ics. Then, coolant flow rates in reactors were chosen 
as the inputs U\(k),u2(k) and temperatures of reac­
tion mixtures in the individual reactors as the outputs 
Vi(k),y2(k). 
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The external mathematical model of the system 
with two inputs, two outputs, and the second-order 
dynamics is described by (see e.g. [6]) 

62 + a\8 -f ao 
a^6 + a4 

CL38 + a2 

82 + a7S + a 6 

0 
0 

b56 + 64 
ui(k) 
u2(k) 

(21) 

where 6 is the difference operator defined by [6] so that 

м * ) = у ( * + 1 2 " у ( А ° , fa(fc)=tt(*+1)"l,(*) 

<522/(fc) = 
y(* + 2 ) - 2 y ( f c + l ) + y ( f c ) 

I? 

62u(k) 
_ u(k + 2) - 2u(fc + 1) + u(k) 
- fi (22) 

where к is the discrete time, Ts is the sampling pe­
riod (time between two measurements on the process). 
The operator 6y represents the difference of y, 62y the 
second difference of y, and generally 6ny is the n-th 
difference of y. The inherent property of the operator 
(22) is that it converges to the continuous derivative 
operator as the sampling period tends to zero. Thus, 
the model (21) represents two second-order differen­
tial equations, when Ts —> 0+. The model (21) is much 
simpler than that described by eqns (1—14) because 
of having two difference equations instead of four­
teen differential ones. Thus, the model (21) is more 
proper for mathematical finding of a controller. The 
numerical values of parameters а$,..., a7, bo,..., 65 
are obtained by statistical analysis of sampled inputs 
ui(k),u2(k) and outputs yi(k),y2(k). 

The other advantage of this model consists in a 
possibility to decompose the system (21) in two sub­
systems. The first of them represents the first reactor 
and is described by 

(S2 + aiS + ao)yi(k) + 1ц(к) = (bľ6 + Ь0)щ(к) (23) 

and the second one represents the second reactor and 
is described-by 

(62 + a76 + a6)y2(k) + h2(k) = (b56 + b4)u2(k) (24) 

Variables hi(k), h2(k) are the interconnections defined 
as 

hi(k) = (a36 + a2)y2(k) 

h2(k) = (a56 + a4)yi(k) 

(25) 

(26) 

and they express the mutual influence of reactors. 
The principles of decomposition and decentraliza­

tion have been used for controller design. The theo­
retical background and the derivation of the control 

algorithm can be found e.g. in [7, 8]. Then, it is nec­
essary to find such a control, which will be able to 
ensure desired goals of control. The decentralization 
approach supposes that the control of the г-th subsys­
tem Ui(k) consists of two parts 

Ui(k) = u\(k)+v*(k) (27) 

The first of them is called the local control u\(k) and 
controls the isolated subsystem. The second part is 
called the global control u^(k) and compensates the 
influence of interconnections. 

Local Control 

The design of local control is based on polynomial 
approach in continuous-time domain, see e.g. [9, 10]. 
Let each of decomposed isolated subsystems be mod­
elled by eqns (23), (24) with hi = 0 , h2 = 0. Further 
consider the step changes of reference values w\, W2 
and the local control loop with two controllers with 
their transfer functions 

q(6) _ qijô + qoi r(6) = roi 

p(6) PiiS + poi' p(S) Pii6 + poi' 
i = 1,2 (28) 

where p(6),q(6),r(6) are polynomials in 6 and qu, qoi> 
PiiiPoi,roi are coefficients, which have to be found. 
Then, the synthesis equations for the first subsystem 
have the form (see [9, 10]) 

(62 + аг6 + a0)(pn6 + poi) 

+ ( M + M(?n<5 + ?oi) 

= 63 +d26
2 + di6 + d0 

6(t2l6
2 + tn6 + toi) + ( M + bo)roi 

= 63 + d26
2 + dx6 + do 

(29) 

(30) 

where (t2\62 + tn6 + £01) is an auxiliary polynomial 
and <53 + d26

2 + d\6 + do is polynomial, which has to be 
chosen properly, see e.g. [4]. The choice of coefficients 
on the right sides of eqns (29), (30) determines the 
dynamic behaviour of the control loop. The parame­
ters of controllers (28) are calculated from (29), (30). 
Then, the local control law of the first subsystem can 
be described by 

"!(*) = [(Pn ~ PoiTs)u[(k - 1) + ToiTswx(k - 1) 

- qiiVi(k) + (qn - qoiTs)yi(k - 1)}/Pll (31) 

Similarly, the local control law of the second sub­
system is 

u2(k) = [(pi2 - Po2Ts)u
l
2(k - 1) + го2Гвю2(А; - 1) 

- Я12Уг{к) + (qi2 - qo2Ts)y2(k - l)]/pi 2 (32) 
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F i g . 2. Adaptive control loop. 

T a b l e 1. Parameter Values Used for Simulation 

qv = 0.32 m 3 m i n - 1 

qR = 0.03 m 3 m i n - 1 

qi = 0.35 m 3 m i n - 1 

92 = 0.32 m 3 m i n - 1 

c A v = 9.82 kmol m - 3 

T v = 328 К 

Pc = 998 kg m - 3 

c p c = 4.182 kJ k g " 1 K " 1 

Vcl = Vc2 = 0.64 m 3 

Tcv = 293 К 
Ts = 0 . 5 min 

Vi = 1.2 m 3 

Fi = 5.6 m 2 

pi = 802 kg m - 3 

Cpi = 3.97 kJ k g " 1 К " 1 

Q I = 38.9 kJ m " 2 m i n " 1 К " 1 

/сю = 6.219 x 10 1 2 m i n " 1 

k20 = 1.262 x 10 2 6 m i n " 1 

Ei/R= 10032 K 

Eil R = 20672 K 
( - A t f i ) = 1750 kJ k m o l " 1 

(-AH2) = 12800 kJ k m o l " 1 

V2 = 1.2 m 3 

F 2 = 5.6 m 2 

P2 = 796 kg m - 3 

Cp2 = 3.94 kJ k g " 1 K " 1 

a 2 = 4 1 . 2 kJ m " 2 m i n " 1 K " 1 

/сзо = 2.703 x 108 m i n - 1 

fc40 = 2.223 x 10 2 7 m i n - 1 

Ez/R = 6896 K 
EA/R = 23453 K 
( - Д Я з ) = 10500 kJ k m o l " 1 

( - Л Я 4 ) = 7500 kJ k m o l " 1 

Global Control 

The global parts of subsystem control were deter­
mined so that they are able to compensate the influ­
ence of interconnections between subsystems. The fol­
lowing equations hold for the first and for the second 
subsystem 

{a36 + a2)y2{k) = {Ъг6 + b0)uf{k) {33) 

{a5S + 04)yi(A;) = (bsS + b4)ug

2{k) {34) 

Eqns {33) and {34) represent generally a system of 
difference equations which must be solved along with 
the control law. These equations can be transformed 
in algebraic equations at the conditions 6u{k) = 0 and 
6y{k) = 0 in the steady state. Under this simplifying 
condition, it is possible to obtain the global parts of 
control in the form 

'У2(к)\_ъ{и1(к)\ 
У1(к)) - a \v*(k)) (35) 

where A = 
a2 0 
0 Ъл 

, B = 
bo 0 
0 b4 

and then 

Ug

1{k)\_n-l>fy2{k) 

!(*) 
B-XA 

yi(k) 
(36) 

R E S U L T S 

The algorithm described above was implemented 
for simulation purposes in the adaptive form. The 
adaptive control loops are described e.g. in [11, 12]. 
The block scheme of an adaptive control loop is shown 
in Fig. 2. Instead of having the real process, the math­
ematical model (2—14) was simulated on a PC. Then, 
the input variables (coolant flow rates) and the output 
ones (temperatures of reaction mixtures) were sam­
pled with predefined sampling period Ts. These data 
were stored in a memory and used for identification 
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of parameters of the external model (21). The adap- recursive identification methods (REFIL, LDFIL, LD-
tive algorithm required to evaluate these parameters DIF) had to be used. Presented control algorithm uses 
in each sampling period, when the new values of in- the recursive identification method LDDIF (see e.g. 
put and output variables were added. So one of the [9]) based on the least-squares method. The recur-
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Fig . 5. Step responses of the CTSTR - output variables. 
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F i g . 6. Step responses of the CTSTR - input variables. 
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Fig . 7. Control responses of the CTSTR - output variables and 
references. 

sive identification enabled to take changes of output 
and input variables into account. After the parameters 
of external model were calculated, the parameters of 
controllers could be evaluated and control laws could 
be calculated by eqns (31), (32), (36) and so the PC 
served as a self-tuner, which realized the control laws. 

The parameters used for simulation are in Table 1. 
These parameters describe theoretical reaction sys­
tem and serve only for simulation. The analysis of the 
static behaviour of the system of two serial CTSTRs 
shows (Figs. 3 and 4) that the optimal working points 
of the system are temperatures Ti ) 0 pt = 336.1 К in 

Fig . 9. Control responses of the CTSTR - input variable in the 
second reactor. 

the first reactor and X^opt = 350.9 К in the second 
reactor. These temperatures were reached, when the 
coolant flow rate in the first reactor was 0.04 m 3 min _ 1 

and in the second one 0.025 m 3 m i n _ 1 . At these con­
ditions a maximal concentration of the product D 
CD2,max could be achieved. 

To compare the dynamic behaviour of the uncon­
trolled and controlled systems, the step responses of 
the CTSTR were obtained at first and they are shown 
in Figs. 5 and 6. These step responses exhibited over-
damped dynamics and it took about 40 min to reach 
a new steady state. The control responses of the CT­
STR are shown in Figs. 7—9. The controlled outputs 
reach their set points wi,W2 after less than 20 min. 
For the reason of occurring many industrial bound­
aries the inputs in the controlled system were limited 
into the interval (0;0.4 m 3 m i n - 1 ) . 

C O N C L U S I O N 

It is very important from the viewpoint of its in­
dustrial utilization to have a good control algorithm 
for chemical processing plants. The control algorithm 
designed in the presented paper has several advan­
tages. It does not require to have an exact mathe­
matical model of the controlled process. The external 
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input-output model can be obtained by the measure­
ment of the input and output variables and the use of 
some of the recursive identification methods. Having 
the real process, the inputs and outputs can be mea­
sured on it. For these purposes it is not necessary to 
know the reaction kinetics exactly. The investigated 
control algorithm is adaptive and the controller pa­
rameters vary as some properties of the controlled sys­
tem change. Presented control algorithm is also very 
simple as it is based on the decomposition and decen­
tralization approaches. The local and global controls 
are very simple and the entire control is only the sum 
of two previous ones. The convergence properties of 
the proposed algorithm are very good, too, and re­
alistic simulations demonstrate convenience of using 
delta operators. The formulation and implementation 
of delta model self-tuning controllers do not bring any 
additional problems and difficulties. 

S Y M B O L S 

fclO> &20>^3(Ь&40 

C A , C B , C c , C D 

t 
ki,k2yk3,k 

CAv 

9,9c><7R 

4v 

QR 

Qc 

P,Pc 

c P ' C p c 
T,TC 

Tv, T c v 

v,ve 

F 
Q 

(-ЛЯ1М-
(-ДЯ 3 ) ,(-
T\,T2,Гз,Г4 

E\,E2, Es, 

4 

-AHX), 
- А Я 4 ) 

s 4 

reactant concentrations 
time 
reaction rate coefficients 
feed concentration 
volumetric flow rates 
feed volumetric flow rate 
reaction heat 
heat accepted by coolant 
reactant and coolant 
densities 
specific heat capacities 
reactant and coolant 
temperatures 
feed values for T and Tc 

reactant and coolant 
volumes 
heat exchange surface area 
heat transfer coefficient 

specific reaction heats 
reaction rates 
activation energies 

kmol m - 3 

min 
m i n - 1 

kmol m - 3 

m 3 m i n - 1 

m 3 m i n - 1 

kJ m i n - 1 

k J m i n - 1 

kg m - 3 

kJ k g - 1 K " 1 

K 
K 

m 3 

. m 2 

kJ m - 2 m i n _ 1 í 

k J kmol" 1 

kmol m - 3 min 
kJ kmol" 1 

R 
k 
u 

У 
ô 

Arrhenius preexponential 
constants 
gas constant 
discrete time 
control input 
controlled output 
discrete time operator 
sampling period 
reference signal 
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