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In trace analysis an exploratory data analysis (EDA) often finds that the sample distribution is 
systematically skewed or does not prove a sample homogeneity. Under such circumstances the 
original data should often be transformed. The power simple transformation and the Box—Cox 
transformation improves a sample symmetry and also makes stabilization of variance. The Hines— 
Hines selection graph and the plot of logarithm of the maximum likelihood function enables to 
find an optimum transformation parameter. Procedure of data transformation in the univariate 
data analysis is illustrated on quantitative determination of copper traces in kaolin raw. 

When exploratory data analysis shows that the 
sample distribution strongly differs from the normal 
one, we are faced with the problem of how to analyze 
the data. Raw data may require re-expression to 
produce an informative display, effective summary, 
or a straightforward analysis [1—10]. We may need 
to change not only the units in which the data are 
stated, but also the basic scale of the measurement. 
To change the shape of a data distribution, we must 
do more than change the origin and/or unit of mea
surement. Changes of origin and scale mean linear 
transformations, and they leave shape alone. Non
linear transformations such as the logarithm and 
square root are necessary to change shape. 

This paper brings a description of the power trans
formation and the Box—Cox transformation and a re-
expression of statistics for transformed data. The 
procedure of the power transformation and the B o x -
Cox transformation is illustrated on a practical ex
ample of the quantitative determination of copper 
traces in kaolin raw. 

THEORETICAL 

Examining data we must often find the proper 
transformation which leads to symmetrizing data 
distribution, stabilizes the variance or makes the dis
tribution closer to normal. Such transformation of 
original data x to new variable value у = g(x) is 
based on an assumption that the data represent a 
nonlinear transformation of normally distributed vari
able x = g"1(y). 

i) Transformation for variance stabilization implies 
ascertaining the transformation у = g(x) in which the 
variance cf(y) is constant. If the variance of the origi
nal variable x is a function of the type cf(x) = ^ (x) , 
the variance cr(y) may be expressed by 

2 fdg(x)f 
<У2(У)= - ^ / i ( x ) = C (1) 

I dx J 
where С is a constant. The chosen transformation 
g(x) is then the solution of the differential equation 

In some instrumental methods of analytical and 
physical chemistry, the relative standard deviation 
<5(x) of the measured variable is constant. This 
means that the variance <r(x) is described by a func
tion cr(x) = fi(x) = ^(x) x2 = const x2. The substitu
tion into eqn (2) will be g(x) = In x, so that an opti
mal transformation of original data is the logarithmic 
transformation. This transformation leads to the use 
of a geometric mean. 

When the dependence cr(x) = f^(x) is of power 
nature, the optimal transformation will also be a 
power transformation. Since for a normal distribution 
the mean is not dependent on a variance, a trans
formation that stabilizes the variance makes the dis
tribution closer to normal. 

ii) Transformation for symmetry is carried out by 
a simple power transformation 
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У = flf(x) = 

x for parameter Я > О 

In x for parameter Я Ф О 

-х~ я for parameter Я < О 

(3) 

which does not retain the scale, is not always con
tinuous and is suitable only for positive x. Optimal 
estimates of parameter Я are sought by minimizing 
the absolute values of particular characteristics of 
asymmetry. In addition to the classical estimate of 
a skewness ^ ( y ) , the robust estimate g1iR(y) is used 

- , x _ (У0.75 ~Уо.5о) ~ (У0.50 ~ У0.25) м\ 

(У0.75-У0.25) 

The robust estimate of asymmetry gP(y) may be also 
expressed with the use of a relative distance between 
the arithmetic mean у and the median y 0 5 0 by 

9р(У) 
У-У0.50 

(5) 

1(У/-У) 2 

/ = 1 

1 П - 1 

as for symmetric distributions it is equal to zero, 
9Р(У) « 0. 

iii) Transformation leading to the approximate nor
mality may be carried out by the use of family of 
Box—Cox transformation defined as 

У=9(х) = 
[ ( х я -1) / Я for parameter Я Ф 01 

In x for parameter Я = ol 
(6) 

where x is a positive variable and Я is real number. 
Box—Cox transformation has the following proper
ties: 

a) The curves of transformation gf(x) are monotonie 
and continuous with respect to parameter Я because 

(X я -1) 
(7) 

tí) All transformation curves share one point [y = 
0, x = 1] for all values of Я. The curves nearly coin
cide at points close to [0, 1]; I.e. they share a com
mon tangent line at that point. 

c) The power transformations of exponent - 2; 
- 3/2; - 1 ; -1/2; 0; 1/2; 1; 3/2; 2 have equal spacing 
between curves in the family of Box—Cox transfor
mation graph. 

The Box—Cox transformation defined by eqn (6) 
can be applied only on the positive data. To extend 
this transformation means to make a substitution of 

x values by (x - x0) values which are always posi
tive. Here x0 is the threshold value x0 < x(1). 

An excellent diagnostic tool enabling estimation of 
parameter Я is represented by the Hines—Hines 
selection graph [8]. It is based on the equation 

( У Л 
XPJ 

VX0.5 J 

A 

+ 
X 0 . 5 

X-\_ p 

-A 

= 2 (S) 

valid for distribution symmetrical around a median. 
For the cumulative probability P, = 2~* , the letter 
values F, £, / = 2, 3 are usually chosen. 

To compare empirical dependence of experimen
tal points with the ideal one, ideal curves for vari
ous values of parameter Я are drawn in a selection 
graph. These curves Я represent a solution of the 
equation уя + х~я = 2 in the range 0 < x < 1 and 
0 < y < 1: 

1. For Я = 0 the solution is a straight line у = x. 
2. For A < 0 the solution is in a form 

у = (2 - х"я)1/я. 
3. For A > 0 the solution is in a form 

x = (2 - ул

я)-1/я. 
The estimate A is guessed from a selection graph, 
according to the location of experimental points near 
to the various ideal curves. 

To estimate the parameter A in Box—Cox trans
formation, the method of maximum likelihood may 
be used because for A = A a distribution of trans
formed variable у is considered to be normal, 
N(jiy, <ŕ(ý)). The logarithm of the maximum likelihood 
function may be written as 

n n 

In L(A) = — I n s\y) + (A - 1)]T In x, (9) 
2 / = 1 

where s2(y) is the sample variance of transformed 
data y. The function In L = /(A) is expressed graphi
cally for a suitable interval, for example, - 3 < A< 3. 
The maximum on this curve represents the maximum 
likelihood estimate A. 

The asymptotic 100(1 - a) % confidence interval 
of parameter A is expressed by 

In L(A) - In ЦА) < xlaW (10) 

where ^ _ a(1) is the quantile of the jf distribution 
with 1 degree of freedom. This interval contains all 
values A for which it is true that 

In L(A) > In ЦА) - 0.5;q_a(1) (11) 

This Box—Cox transformation is less suitable if con
fidence interval for A is too wide. When the value 
A = 1 is also covered by this confidence interval, the 
transformation is not efficient. 
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After an appropriate transformation of the original 
data {x} has been found, so that the transformed data 
give approximately normal symmetrical distribution 
with constant variance, the statistical measures of 
location and spread for the transformed data {y} are 
calculated. These include the sample mean y, the 
sample variance s2(y), and the confidence interval 
of the mean у ± ^ _ Q/2 (n - 1)s(y)/(n)1/2. These esti
mates must then be recalculated for original data {x}. 
Two different approaches to re-expression of the sta
tistics for transformed data can be simply used: 

1. Rough re-expressions represent a single reverse 
transformation x R = gr1(y)- This re-expression for a 
simple power transformation leads to the general 
mean 

5X 
/ = 1 (12) 

where for Я = 0, In x is used instead of Xя and ex 

instead of x 1 / A . The re-expressed mean x R = x_-, 
stands for the harmonic mean, x R = x 0 for the geo
metric mean, x R = x, for the arithmetic mean, and 
x R = x 2 for the quadratic mean. 

2. The more correct re-expressions are based on 
the Taylor series expansion of the function у = g(x) 
in a neighbourhood of the value y. The re-expressed 
mean x R is then given 

-1 1 d ^ ( x ) 

2 dx" 

dg(x) 

dx 

4-2 

s2(y) (13) 

For variance it is then valid 

s ( * R ) ~ 

r dg(x) A 

dx 
s2(y) (14) 

where individual derivatives are calculated at the 
point x = x R . The 100(1 - a) % confidence interval 
of the re-expressed mean for the original data may 
be defined as 

where 

G = -

X R - / L < ^ < X R + / u 

y+G-h-ai2(n-i) 

y + G + t^al2(n -1) 

s(y) 

£(y) 

1 cŕgríx) 

2 dx'' 

dg(x) 

dx 
s2(y) 

(15) 

(16a) 

(16b) 

(17) 

On the basis of the (known) actual transformation 
у = g(x) and the estimates y, s2(y) it is easy to cal
culate re-expressed estimates x R and s2(xR): 

1. For a logarithmic transformation (when Я = 0) 
and g(x) = In x the re-expressed mean and variance 
are calculated by eqns (18) and (19) 

and 
x R = exp [y + 0.5s2 (/)] 

s 2 (x R ) = x 2 s 2 ( y ) 

(18) 

(19) 

2. For Я Ф 0 and the Box—Cox transformation (7) 
the re-expressed mean x R will be represented by one 
of the two roots of the quadratic equation 

*R,1.2 =[0-5(1 + 1У)± 

± 0.5^ + 2Цу+ s2(y)) +Г (y2-2s2 (y)) 
1Д 

(20) 

which is closest to the median x0.5 = <Г1(У o.s)- If x R 

is known the corresponding variance may be calcu
lated from 

-(-2A + 2) 2 , 
s'W = x£"«r{y) 

COMPUTATION 

(21) 

Procedure POWER TRANSFORM in package 
ADSTAT [11] searches parameters of simple power 
transformation and parameters of normalized Box— 
Cox transformation of data. It enables the explora
tory data analysis of transformed data. For the trans
formation (3) different measures of symmetry (4) and 
(5) are calculated and the sample curtosis in the 
range - 3 < Я < 3 with a step 0.1 and the optimal 
values of these measures are printed. The selection 
graph is drawn as well as the points of optimal val
ues of Я. From this graph the value of Я can be es
timated. Using transformed data the mean y, the 
variance s2(y), the skewness g^y), and the curtosis 
g2(y) are calculated. These computations can be 
repeated for various values of Я. For the transfor
mation (6) the estimate Я maximizing In ЦЯ) defined 
by eqn (9) is calculated. Different measures of sym
metry (eqns (4—6)) and the sample curtosis are 
searched. Search is obviously realized in the range 
- 3 < Я < 3 with a step 0.1. Optimal values of Я and 
corresponding measures are printed. The graph of 
In L vs. Я with the 95 % confidence interval (10) is 
drawn. From thejn L = ^Я) plot the Я value is esti
mated. Selected Я is used in calculation of estimates 
y, s2(y), ^ ( y ) , and g2(y)- Then from these estimates, 
the re-expressed estimates of original variables x R 

(73), s2(xR) (14), and the 95 % confidence interval 
of the re-expressed variable ц are calculated. 
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RESULTS 

Study Case 1. Determination of copper trace in 
kaolin 

In a standard sample of kaolin the content of cop
per trace was determined in ppm and the values 
were arranged in increasing order. The type of a 
sample distribution and measures of location and 
scale were examined. 

Data: the copper content w/ppm in increasing or
der gives a set: 4, 5, 7, 7, 7, 8, 8.3, 8.4, 9.4, 9.5, 
10, 10.5, 12, 12.8, 13,22,23. 

Solution: Applying an analysis of basic assump
tions about data the following conclusions were met: 

a) Combined sample skewness and curtosis test 
leads to statistic Сл = 7.908 > /(0.95, 2) = 5.992 
and therefore a normality of data distribution was 
rejected. 

b) Interval of both Hoaglin's outer bounds [- 3.191; 
22.191] does not contain one observation and there
fore this point x(17) may be denoted as an outlier. The 
measures of location, scale and distribution shape 
for data without 1 outlier are x = 9.619, s(x) = 4.170, 
g^x) = 1.610, and g2{x) = 6.340. 

c) Test of sample elements independence leads 
to statistic r17 = 1.036, ro.975 (18) = 2.101 and there
fore an independence is accepted. 

Examining the first part of the EDA diagnostics 
following sample properties were found: the jittered 
dot diagrams and the box-and-whisker plots (Fig. 1) 
indicate two outliers which can be accepted if the 
distribution is skewed. 

The nonparametric kernel estimation of probabil
ity density function (Fig. 2) indicate that the distri
bution is skewed towards higher values. The 
quantile-quantile (rankit) plot (Fig. 3) with convex 
increasing shape confirms that the distribution is 
skewed to higher values. 

i i i i i г 

J I I L 
2.00 6.00 10.00 14.00 

X 

18.00 22.00 

Fig. 2. The kernel estimation of the probability density function 
of original sample: 1. robust, 2. classical. 

-2.00 2.00 0.00 

G- normal 

Fig. 3. The quantile-quantile (rankit) plot of original sample. 

The second part of EDA concerns the search for 
a suitable symmetric transformation of the data. The 
selection graph (Fig. 4) shows that the optimal power 
reaches a value above - 0.5 in the range near zero 
which corresponds to a logarithmic transformation. 
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Fig. 1. The jittered diagrams and the box-and-whisker plots of 
original sample. 
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Fig. 4. The Hines—Hines selection graph. 

0.80 

Chem. Papers 48 (3) 164-169 (1994) 167 



M. MELOUN, J. MILITKY 

- 15.00 

-20.00 

-25.00 

- 30.00 

- 35.00 

- 40.00 

- 45.00 

- 50.00 

-55.00 

I I I I I I 

-

/ 

/ 

/ 

/ 

-

" i I I 

PS* 

\ 

\ 

\ 

\ 

\ 

I I I " 

-6.00 -2.00 2.00 Л 

Fig. 5. The plot of logarithm of likelihood function. 

6.00 

From the plot of the logarithm of the likelihood func
tion (Fig. 5) for the Box—Cox transformation the 
maximum of the curve is at Я = - 0.2. The corre
sponding 95 % confidence interval does not contain 
the value Я = 1, so this transformation is statistically 
significant. The rankit plot (Fig. 6a—c) shows that 
there is a significant improvement in the distribution 
symmetry for transformation Я = - 0.27. 

The measures of location, spread and shape for 
the original data have values of mean x = 10.406, 
standard deviation s(x) = 5.180, skewness g^(x) = 
1.399, and curtosis g^(x) = 4.272. After a logarith
mic transformation (A = 0) the values are 2.243, 
0.203, 0.304, and 3.070, and after a power transfor
mation (A = - 0.27) they are 0.5536, 0.065, 0.048, 
and 3.071 while the Box—Cox transformation (A = 
- 0.27) leads to values 1.674, 0.246, - 0.048, and 
3.071. 

By the rough re-expression (12) x R = exp (x*) = 
9.337. The corresponding confidence limits are /L = 
7.742 and lö = 11.878 (eqns (16a, 16b)). Quantile 
ro.975(17-1) = 2.12. 

By the more correct re-expression (13) there is 
xR = 9.187 with /L = 8.272 and lu = 13.147 (eqn (20)). 

In comparison of the sample distribution with a 
theoretical exponential one, the correlation coefficient 
rxy of the 0 -0 plot is found to be 0.967, while for the 
log-normal one rxy is 0.961. 

The assumption of the log-normal distribution is 
acceptable. Because of the small sample size it is 
difficult to be certain whether there are outliers in 
the sample, or if the sample distribution is of skewed 
log-normal or of skewed exponential nature. 

CONCLUSION 
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Fig. 6. The quantile-quantile plot indication of improvement of 
a distribution symmetry of a) original data when b) the 
power transformation, and c) the Box—Cox transforma
tion are applied. 

sures of transformed data are re-transformed to get 
these unbiased and rigorous measures for original 
data. 

Often, the chemical data are less ideal and do not 
fulfill all basic assumptions. Original data are then 
transformed to improve a symmetry of data distri
bution and a variance stabilization. Statistical mea-
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tion of components of interest, isolation of determined 
analytes from the matrix and removal of potential inter
ferences. For this reason there have been utilized each 
time more special qualities of sorbent materials [2—4]. 

In the selection of a proper sorbent it is neces
sary to take into consideration general characteris
tics as functional groups at the surface, chemical 
and thermal stability, as well as inertness and cata
lytic properties, mechanical resistance, pores diam
eter and volume, specific surface area, size and 
shape of particles. 

Affinity of sorbents towards various organic com
pounds depends on the type of functional groups 
bound on the surface of a sorbent and on their ori
entation on the surface. 
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Carbon sorbent Carb I (prepared by controlled pyrolysis of saccharose) was tested for 
preconcentration of volatile organic compounds from the gas phase. The model mixture of hydro
carbons (n-alkanes and aromatics) and mixture of aromatics with low-boiling polar solvents was 
used. For desorption of compounds several solvents were utilized, carbon disulfide was found to 
be the best. Adsorption—desorption process was studied in the concentration range of compo
nents in nitrogen 0.03—15 |ig dm"3. Chromatographic measurements were performed on gas 
Chromatograph with on-column and splitless injection, fused silica capillary columns with chemi
cally bonded stationary phases under temperature programmed conditions and flame ionization 
detector. The recovery of n-alkanes and aromatics was found to be around 90 %, the recovery of 
low-boiling solvents, particularly of polar character was low. 


