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The results of the interphase diffusion in the system hydroxyethylcellulose film—water as a function 
of solid polymer compression are discussed. The experimental technique is briefly described and the 
possible swelling mechanism is proposed. The pressure dependence of the diffusion coefficient is 
divided into two regions: the one of elastic and the other of permanent polymer chain deformation. The 
change to permanent deformation is controlled by deformation time or by values of the external 
pressure. 

Much attention has been paid in the literature to 
the elucidation of the transport processes in the 
system solid polymer substance—solvent. The 
theories of diffusion based on the assumption of 
the existence of free volume [1,2], or on the knowl­
edge of the volume density of cohesive energy [3] 
are of the historic significance. Theories based on 
the assumption of free volume are of great impor­
tance at the present time as well [4—8]. Alterna­
tive explanations of the diffusion processes are 
provided by the theories based on the existence 
of the activated state. For the dependence of the 
diffusion coefficient D on the activation energy E 
in the case of diffusion into a system of the poly­
mer chains [9] the following equation is valid 
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where A is a jump distance, f a number of degrees 
of freedom, v thermal vibration frequency of a 
molecule, and p a parameter of the cooperative 
segment motion. Activation energy E depends on 
the number of degrees of freedom. It can be more 
precisely specified as [10] 

E = PAV + Eb + fRT (2) 

The first term is a product of the internal pressure 
P\ and the volume AV occupied by the system of 
the polymer chains and a penetrating molecule. 
AV value can be expressed using a length of the 
polymer segment s, diameter of the penetrating 
particle dp, free volume per length unit of the poly­
mer chain Ф, and an average diameter of the 
macromolecule dc by the equation 

A\/ = l (c f p - d>1/2/2)2[s7(dp- Ф1/2/2)2-1]1/2йЛ/ (3) 

where N is a number of the polymer segments. 

The term Eb represents a contribution to the 
activation energy due to chain rotation. It can be 
expressed by the equation 

Eb = ^ (4) 
Я 

where Я is the length of a chain along its axis, 4* 
is the corresponding rotation potential that can be 
described as 

V = 9*F0AV2 [s7(orp - Ф1/2/2)2 - I]"1 (5) 

The last term fRT represents a contribution of the 
thermal energy, f is a number of the degrees of 
freedom of the polymer segment which is propor­
tional to the chain length s according to the for­
mula 

f=2sZ/X (6) 

Z is a proportionality factor that is usually equal to 
unity [10]. After substitution of the terms from the 
aforementioned relationships to eqn (2), we obtain 
for the total activation energy the following for­
mula 

E=-(dp- &/2/2)2№/2Z)2(dp- Ф1/2/2)2-

- ^/2ďcNP^36%Zf-1[(fk/2Z)2(dp- Ф1/2/2)2-(7) 
- I]"1 + fRT 

This relationship implies that activation energy 
of diffusion is a function of the geometrical sizes 
of a segment as well as of the penetrating parti­
cle, of the number of degrees of freedom of the 
polymer segment, of pressure and temperature in 
the system. Ueberreiter and Asmussen [11] have 
derived from the swelling kinetics a formula for the 
temperature dependence of the thickness of the 
swollen layer 5 
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5 = ô 0 exp(-As/T) (8) 

Physical meaning of the empirical constant A5 in 
the product RA5 (R - gas constant) has been clari­
fied [12] as isothermal activation work performed 
by a system at the passage of the macromolecular 
coils from the swollen layer into the solution. Us­
ing certain simplification [12] it can be presented 
by the relationship 

RAs-^ + PWZ-VZ) (9) 

VQ is critical volume of 1 mol of the polymer seg­
ments at the diffusion that controls the rate of 
dissolution, l/d is critical volume of 1 mol of seg­
ments at their passage into the solvent, P is equi­
librium pressure. The quantity RA5 that is greatly 
affected by the sum of an equilibrium and an in­
ternal pressure, causes increase of the rate of 
dissolution of the polymer segments и according 
to the equation [12] 

t/=u0e- ( A G d-™5 ) (10) 

where u0 is a preexponential factor, AGd is a change 
in the activation energy of diffusion due to disso­
lution. The rate и is related to the diffusion coeffi­
cient D by the relationship 

u = D/8 (11) 

After substitution of eqns (11) and (9) into the 
formula (10) one can express dependence of the 
diffusion coefficient on the equilibrium and internal 
pressure as follows 

D = ô u0 exp {- [AGd - (Pi + P)(VC
D - vm (12) 

Presented paper deals with the investigation of 
the effect of isothermal compression of hydroxy-
ethylcellulose on the interphase diffusion of the 
solvent into a polymer sample. 

У/Л i V/A / 

Fig. 1. Cell for the measurement of the rate of motion of the 
optical interphase. 1. Glass plates, 2. compression site, 
3. seal, 4. cell basement, 5. sample. 

microscope. The polymer films have been com­
pressed in a press with an external pressure of 
0—2 x 107 Pa during the time intervals of 10 s— 
30 min. Time of the transfer of the sample from a 
press to a measuring cell could be neglected in 
comparison with the duration of tempering and 
measurement. All measurements have been car­
ried out at 25 °C. 

RESULTS AND DISCUSSION 

From the point of view of the experimental ar­
rangement in this case we deal with a one-dimen­
sional diffusion of the solvent into a polymer sam­
ple along the x axis (Fig. 2). The structure of the 
swollen layer is known from the literature [13]. 
Considering a film thickness to be negligible in 
comparison with its length, we deal with a case of 
a one-dimensional diffusion that can be described 

EXPERIMENTAL 

Films of hydroxyethylcellulose (Natrosol 250 MR, 
MT = 660 000) of thickness 0.25 mm have been 
used. Distilled water has been used as a solvent. 

At the measurement of the interphase diffusion, 
polymer film has been placed between two plan-
parallel glass plates (Fig. 1), so that the film thick­
ness could have been considered as constant. After 
fixing of the sample, the polymer and the solvent 
have been separately tempered. After the tempera-
tion a cell with the polymer sample has been in­
serted into the tempering unit with a solvent, and 
the countdown has been started at the moment of 
the contact of a sample with the solvent. Motion 
of the boundary of the swollen layer (optical 
interphase) has been observed using an optical 

Fig. 2. Experimental arrangement of the measurement of the 
rate of motion of the optical interphase. 1. Solvent, 2. 
polymer at time point ŕ = 0, 3. polymer at time point 
t Ф 0, optical interphase, d - position of the optical 
interphase. 
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by the diffusion equation with the following bound­
ary and initial conditions 

Эг Эх 
D 

Эс 
Эх 

(13) 

t= 0 

ŕ * 0 

с = 0 
с = c0 
с = с0 

x > 0 
х = 0 
х = 0 

where с is concentration, D diffusion coefficient. 
Assuming independence of the diffusion coeffi­

cient on the concentration, eqn (13) can be solved 
using Laplace's transformation [14]. After the in­
verse transformation, the concentration function has 
a shape of a complementary error function 

c(x, t) = c0 erf с (14) 
(2Dt)V2 

where c0 is concentration of the penetrant mol­
ecules, erfc(y) is a complementary error function 
defined as 

У 

erfc(y) = 1-27T1 / 2 jVx 2dx 

Due to large values of the argument y, the func­
tion erfc(y) might be approximately presented in 
the form of a series 

erfc(y)« 
- y 2 
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Taking into consideration the first two terms of 
relation (15) in the brackets, the function c(x, t) 
can be presented as 

с = с0к 
e 
2y 

1-
1 

2y2 
(16) 

where у = x(2Dt)~V2. Having in mind that the opti­
cal interphase represents a front of the penetrant 
progress (i.e. concentration of the penetrant mol­
ecules at the boundary approximately equals zero), 
magnitude of с in eqn (16) can be considered as 
close to zero. From this equality it follows for у 

2 1 
У =-У 2 

(17) 

After the corresponding substitution, a time de­
pendence of the variation of the thickness of the 
swollen layer 5 can be obtained 

8 = x(c = 0) = (2Dt)V2 or 5 2 = 2Dt (18) 

Eqn (18) is valid with the precision of approxima­
tion (16). For the values of the thickness of the 
swollen layer of the mm order, swelling time is of 
102 s order, and the values of the diffusion coef­
ficient are of 10"6 cm2 s"1 order (characteristically 
obtained from the experimental measurements), the 

magnitude of the argument у is ca. 5. For this value 
contribution of the higher terms in the formula (75) 
compared to that of the first two terms in the square 
brackets is approximately 1 %. This is the impre-
ciseness that is obtained due to the assumption 
of correctness of eqn (18) at the above-mentioned 
conditions. The constant D in eqn (78) represents 
a mean apparent coefficient of mutual diffusion, 
since the motion of the optical interphase that is 
registered with a microscope is on the basis of 
Kirkendalľs effect composed of the reversely ori­
ented motions of the molecules of the solvent and 
of the polymer. Kirkendalľs phenomenon for the 
binary system of the components A and В can be 
described by the relationship for the diffusion co­
efficient of the whole system 

D = DA(B(1 - 7A,B) + £>B,A7A(B (19) 

where DAB, DBAare coefficients of partial diffusion 
of the component A into component В and vice 
versa, 7A(B is a mole fraction of component A in 
component B. From this relationship it follows that 
experimentally observed total diffusion coefficient 
depends on the partial diffusion coefficients of the 
components, as well as on the mole ratio of the 
components in the system. Mean apparent coeffi­
cient of mutual diffusion D (further on just diffusion 
coefficient) is calculated by a linear regression from 
the slope of the time dependence of the variation 
of the thickness of the swollen layer 5 (eqn (78)). 

From Fig. 3 it follows that at the brief compres­
sion of a polymer sample (curves for the times 10 
s and 1 min) due to the chain relaxation, no dissi­
pation of free volume takes place. Its dispersion 
character is retained. After disloading of the sam­
ple and its subsequent insertion into the solvent, 
chain expansion occurs as well as increased mo­
tion of the solvent molecules (i.e. motion of the 
optical interphase) into the polymer due to the 
Kirkendalľs effect. This fact causes the increase 
of the diffusion coefficient magnitude with the grow­
ing external pressure. The region of the elastic 
deformation of the polymer chains might be in 
mechanics compared with a spring, while the ex­
pansion work RA5 from eqn (9) corresponds to the 
potential energy of the spring 1/2 kz2 (z is an im­
mediate amplitude) that is changing into the ki­
netic form represented in the case of a polymer 
system by a rate of the advance of the phase 
boundary (relationship (7 7)). According to eqn (12) 
diffusion coefficient of the system compressed 
polymer film—penetrant exponentially grows with 
the external compression pressure P that is valid 
for the region of the elastic deformation of the 
chains. By means of correlation of the linear parts 
of the curves corresponding to 10 s and 1 min 
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Fig. 3. Dependence of the mean coefficient of mutual diffusion 
in the system hydroxyethylcellulose film—distilled water 
at 25 °C on the pressure of film compression and on 
time of action: 1. 10 s, 2. 1 min, 3. 15 min, 4. 30 min. 

(Fig. 3) in the region of small pressure values P 
with the expression (12) and using a linear regres­
sion procedure it is possible to define a magni­
tude of the internal pressure Pj that equals 2.7 x 
106 Pa for compression during 10 s and 4 x 106 

Pa for compression during 1 min. Taking into ac­
count that the values of the internal pressure are 
proportional to the accumulated energy of the 
deformed chains, they amount up to 80 % of the 
value of the applied external pressure P in the 
region where D is linearly dependent on P. This 
implies that the polymer chains are apparently to 
the great extent able to accumulate externally 
supplied energy and to relax back to the initial 
state in the region of the elastic deformations. 

Different situation occurs at the long-run action 
of the external pressure. In such a case the con­
ditions are created in the polymer for arising of an 
internal flow of material and of an anisotropic flow 
of the free volume associated with a change of its 
spatial distribution. The curves for the times of 15 
min and 30 min in Fig. 3 could be divided in the 
region of low pressures into an area of elastic 
deformation (growth of D with increasing external 
pressure), the mechanism of which has been al-
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Fig. 4. Dependence of the mean coefficient of mutual diffusion 
in the system hydroxyethylcellulose film—distilled wa­
ter on the compression time at a constant pressure of 
107 Pa and 25 °C. 

ready explained, and in the region of higher pres­
sures into an area of irreversible compression of 
the solid sample that results in the decrease of D 
with increasing external pressure. 

Similarly, it can be seen from Fig. 4 that illus­
trates the dependence of the diffusion coefficient 
on the time of sample compression (in the interval 
10 s—120 min) at the constant pressure, that at 
longer compression times an irreversible deforma­
tion of the sample occurs that causes lowering of 
the D value. 
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