1-(5-Nitro-2-furyl)-2-propenylation of Aromatic Derivatives under Friedel—Crafts Conditions

D. BERKEŠ, D. VÉGH, and M. DANDÁROVÁ

Department of Organic Chemistry, Faculty of Chemical Technology, Slovak Technical University, CS-812 37 Bratislava

Received 11 June 1991

Utilization of 1-(5-nitro-2-furyl)-2-bromopropene for propenylation of electron-rich aromatics in the presence of AlCl₃ is described. ¹H NMR spectroscopy was used to monitor the complex-forming equilibrium substrate—AlCl₃. ¹³C NMR spectra of the prepared 2-aryl-1-(5-nitro-2-furyl)propenes are analyzed.

Alkenylations of a limited number of electron-rich aromatic derivatives by vinyl halides in the presence of strong Lewis acids (Friedel—Crafts alkenylations) have been described. Such are, for instance, alkenylations with β -, or β , β -substituted vinyl halides with strong activating substituents [1—4]. Conversely, electron-donating groups in α -position of vinyl halide exhibit a strong inhibitory effect [5]. Such reactions allow direct alkenylation of activated aromatic substrates.

In our earlier papers we have described the activating effect of 5-nitro-2-furyl [6—8] and 5-nitro-2-thienyl [9] moiety in reactions of the Friedel—Crafts type. Thus the data gathered from the reactions with 2-(5-nitro-2-furyl)vinyl bromide allowed us to suggest a tentative Ad_E —E mechanism of 2-(5-nitro-2-furyl)vinylation of aromatic derivatives in the presence of $AlCl_3$ [10]. Now we present another study of the above reaction, using vinyl bromide substituted in α -position by an electron-donating group. Special attention was paid to the properties of the substrate— $AlCl_3$ complex, which were studied by 1 H NMR spectroscopy.

The starting 1-(5-nitro-2-furyl)-2-bromopropene (*I*) was prepared as pure (*Z*)-*I* and (*E*)-*I* isomers either by a debrominative decarboxylation of the corresponding 2-methyl-3-(5-nitro-2-furyl)-2,3-dibromopropanoic acid [11], or by treating the po-

Scheme 1

Table 1. ¹H NMR Spectral Data (δ) of (Z)-I and its Complex with AlCl₃ in C₂HCl₃

Compound	H-4' (d)	H-3' (d)	H-1	CH ₃
(Z)-I	7.35	7.23	6.78	2.57
(Z)-I · AICI _a	8.31	7.72	7.10	2.77
$\Delta\delta$	0.96	0.49	0.32	0.20

tassium salt of 2-methyl-3-(5-nitro-2-furyl)propenoic acid with N-bromosuccinimide (NBS) (Scheme 1).

The complex-forming reaction of *I* with AlCl₃ was studied in dry C²HCl₃, under argon atmosphere and at 25 °C. ¹H NMR spectra were taken within 5 min from mixing the components. Under the above conditions (*E*)-*I* was found to undergo a rapid isomerization, which resulted in a mixture in which (*Z*)-*I* prevailed.

A gradual addition of $AICI_3$ to (Z)-I causes a monotonous rise in chemical shifts of protons; the maximum values of chemical shifts reached are given in Table 1.

For a given mole ratio $AlCl_3/(Z)-I$ $\Delta\delta$ values decrease in the order $\Delta\delta(H-4)$, $\Delta\delta(H-3)$, $\Delta\delta(H-1)$, $\Delta\delta(CH_3)$. Thus the highest values of chemical shifts belong to H-4´ proton of the furan ring. This observed effect on chemical shifts tallies well with the notion of primary attack of $AlCl_3$ on the nitro group in (Z)-I (Scheme 2).

In the presence of excess AICl₃ the complex *II*, a strongly activated vinyl halide, reacts with selected aromatic and heterocyclic derivatives to give 2-aryl- or heteroaryl-1-(5-nitro-2-furyl)propenes *IIIa—IIId* (Scheme 3). Because a 2-methyl group was present in (*Z*)-*I*, the reaction gave lower yields and the range of possible substrates was narrower

Scheme 3

than in reactions with (Z)-2-(5-nitro-2-furyl)vinyl bromide [8].

In addition to derivatives *Illa—Illd* the reaction mixture always contained 20—30 % of *I* (a mixture of *E* and *Z* isomers with the latter predominating) and the product of hydrolysis of (*Z*)-*I* 1-(5-nitro-2-furyl)-2-propanone (*IV*) [12]. The isomer (*E*)-*I* furnished a similar distribution of products. Only stable *E* isomers of *Ill* were isolated; *Z* isomers of *Ill* (monitored by ¹H NMR spectroscopy) were not found in the reaction mixture.

The structures of the starting materials and of reaction products were confirmed by IR, UV, ¹H NMR and ¹³C NMR spectroscopy. The configuration at the double bond in *Illa—Illd* was determined from the NMR spectra containing proton coupling information, further from the measured direct coupling constants *J*(C, H), as well as from the characteristic splitting pattern resulting from the longrange coupling.

The signal of C-5' appears in ¹³C NMR spectra as a broad, low-intensity multiplet owing to the effect of the quadrupole moment of the nitro group [13, 14]. No signal of C-5' atom was observed in the spectrum of *IIIb*. The assignment of C-3', C-4' signals was done on the basis of direct and geminal coupling constants *J*(C, H) and the relationship [13, 15]

$${}^{1}J(C-4', H-4') > {}^{1}J(C-3', H-3')$$

 ${}^{2}J(C-4', H-3') > {}^{2}J(C-3', H-4')$

The geminal interaction with H-3′ causes a split of the signal of C-4′ to doublet of doublets, the interaction with H-4′ and H-1 splits the signal of C-3′ to a doublet of triplets. The signal of C-1 in the spectra without proton decoupling appears as a double quartet, this being a consequence of long-range coupling with a CH_3 group; no interactions with protons of the furan ring were observed. Signals of carbon atoms in thiophene derivative *IIId* were assigned by comparison of J(C, H) data with pertinent data from the literature [16].

The determination of configuration of compounds IIIa-IIId was made on the basis of the interaction, expressed as $^3J(C, H)$, between the C-3 of the methyl group and ethylenic H-1 [17—19]. In one of our previous papers we published the $^3J(C, H)$

values for some trisubstituted 1-(5-nitro-2-furyl)-ethylenes [14]. These values, together with the characterized, separable (*E*)-*I* and (*Z*)-*I* isomers enabled the structure assignment of derivatives IIIa-IIIId. Thus in (*E*)-*I* the $^3J(C-3, H-1)$ constant was 6.8 Hz, whereas in (*Z*)-*I* $^3J(C-3, H-1) = 4.9$ Hz. Although the measured coupling constant for (*E*)-*I* was smaller than in other derivatives [14, 18, 19], we assigned to derivatives IIIa-IIIId, in which $^3J(C-3, H-1) = 8.5-8.7$ Hz, an *E*-type of structure.

EXPERIMENTAL

Melting points were determined with a Kofler hot block. Ultraviolet spectra of methanolic solutions (ε /(m^2 mol⁻¹)) were measured with a spectrophotometer UV—VIS (Zeiss, Jena). Infrared spectra of KBr discs were taken with the Specord IR 71. ¹H NMR spectra of C²HCl₃, or hexadeuteroacetone solutions were measured with an 80 MHz spectrometer, model BS 487 C (Tesla), using tetramethylsilane as internal standard. ¹³C NMR spectra were taken in 10 mm tubes at 25 °C with a 25.05 MHz spectrometer, model FX 100 (Jeol).

(Z)-1-(5-Nitro-2-furyl)-2-bromopropene ((Z)-I)

The 2-methyl-3-(5-nitro-2-furyl)propenoic acid (4 g; 0.02 mol) was brominated in solid phase, kept over concentrated sulfuric acid, by bromine vapours in a closed desiccator. After completion of the reaction (monitored by mass growth) the crude product was dissolved in acetone (150 cm³), Na₂CO₃ (5 g) was added and the mixture was refluxed for 4 h with the exclusion of moisture. The bromopropene (Z)-I was obtained by chromatography of the concentrated mixture on a silica gel column, eluted by benzene. Yield 2.3-2.5 g (50-54 %), m.p. = 70-72 °C. For $C_7H_5BrNO_3$ (M_r = 232.0) w_i (calc.): 36.2 % C, 2.6 % H, 6.0 % N, 34.4 % Br; w_i(found): 36.4 % C, 2.6 % H, 6.0 % N, 33.8 % Br. IR spectrum, \tilde{v}/cm^{-1} : 1480, 1471. 1356, 838. UV spectrum, λ_{max}/nm (log $\{\varepsilon\}$): 353 (3.26). For ¹H NMR spectrum see Ref. [14].

(E)-1-(5-Nitro-2-furyl)-2-bromopropene ((E)-I)

The 2-methyl-3-(5-nitro-2-furyl)propenoic acid (1 g; 5.1 mmol) was dissolved in a warm solution of potassium acetate (1 g; 5.1 mmol) in water (150 cm³). Small portions of *N*-bromosuccinimide were added to the stirred solution at 60—70 °C during 1 h. The reaction mixture was then cooled to laboratory temperature, extracted by ethyl acetate, and

Table 2. ¹³C NMR Spectral Data (δ) of Substituted ,1-(5-Nitro-2-furyl) propenes I, IIIa—IIId

Compound	C-1	C-2	C-3	C-2'	C-3′	C-4'	C-5′	C _{erom}
(E)-I	119.3	121.0	26.6	153.1	111.9	113.2	151.0	
(Z)-I	117.2	128.9	31.0	153.5	112.2	113.1	150.4	
IIIa	112.4	144.3	18.6	156.8	111.6	114.0	150.7	134.5 (C-1"), 127.4 (C-2"), 114.0 (C-3"), 160.1 (C-4"), 55.4 (OCH ₃)
IIIb	112.4	144.6	18.7	156.3	111.6	114.1	Ь	134.9 (C-1"), 125.2 (C-2"), 124.1 (C-3"), 154.6 (C-4"), 115.1 (C-5"), 129.0 (C-6"), 16.0 (CH ₃)
IIIb*	112.7	145.0	18.2	156.5	112.0	114.8	ь	134.0 (C-1"), 125.5 (C-2"), 124.0 (C-3"), 157.6 (C-4"), 115.3 (C-5"), 129.4 (C-6"), 15.9 (CH ₃)
IIIcª	112.6	145.0	18.2	154.8	111.8	114.8	152.3	133.7 (C-1"), 127.0 (C-2"), 124.5 (C-3"), 157.5 (C-4"), 16.4 (CH ₃)
IIId	112.3	146.2	18.4	156.0	111.7	114.1	150.9	137.6 (C-2"), 125.7 (C-3"), 128.6 (C-4"), 126.5 (C-5")

a) Measured in hexadeuteroacetone; b) unidentified.

Table 3. Coupling Constants J(C, H)/Hz in ¹³C NMR Spectra of Trisubstituted Propenes I, Illa—Illd

Compound	C-1, H-1	C-3, H-3	C-3, H-1	C-3', H-3'	C-4', H-4'	C-3', H-4'	C-4', H-3'
(E)-I	165.0	129.8	6.8	183.6	186.5	2.9	3.9
(Z)-I	158.2	131.3	4.9	183.6	185.5	2.9	3.9
Illa	156.8	127.9	8.5	184.1	184.6	2.9	3.8
IIIb	157.2	127.6	8.6	181.1	185.2	a	3.8
IIIc	156.7	127.8	8.7	181.2	185.4	a	3.6
III₫⁵	156.8	128.9	8.8	181.7	184.7	a	3.8

a) Unidentified; b) J(C, H) of 2-thienyl group: 168.5 (C-4", H-4"), 4.4 (C-4", H-3"), 189.0 (C-5", H-5"), 7.3 (C-5", H-4"), 10.7 (C-5", H-4"), 167.0 (C-3", H-3").

Table 4. Physicochemical Characteristics, IR and UV Spectral Data of the Derivatives IIIa—IIId

Compound Formul	Formula	w₁(calc.) /% w₁(found) /%			Yield/%	M.p.∕°C	v∕cm ⁻¹	λ _{max} /nm
	$M_{\rm r}$	M _r C	Н	N	11010/70	W.P3 0	V/CIII	$\log \{\varepsilon\}$
IIIa	C14H13NO4	64.9	5.05	5.40	23	84.5—85.5	1465, 1450,	403
	259.3	65.2	5.11	5.31			1355, 1030	3.31
ШЬ	C14H13NO4	64.9	5.05	5.40	35	169—171	1512, 1460,	416
	259,3	65.3	5.09	5.23			1351, 1034	3.34
IIIcb	C15H15NO4	65.9	5.53	5.13	24	154—156	1478, 1355,	415
	273.3	66.5	5.62	5.26			1222, 1208	3.18
IIId	C11H9NO3S4	56.2	3.86	5.95	31	124-126	1466, 1360,	411
	235.3	56.3	3.90	5.80			1340, 1031	3.31

a) w_s(calc.) 13.6 %; w_s(found) 13.2 %. b) IR spectrum measured in CHCl₃ solution.

the concentrated extract chromatographed on a silica gel column, eluant benzene—cyclohexane ($\varphi_r = 5:3$). Yield 0.24—0.3 g (20—25 %). After crystallization from toluene—heptane m.p. = 52—56 °C. For $C_7H_5BrNO_3$ ($M_r = 232.0$) w_i (calc.):

36.2 % C, 2.6 % H, 6.0 % N, 34.4 % Br; w_i (found): 36.6 % C, 2.7 % H, 6.13 % N, 33.9 % Br. IR spectrum, $\tilde{\nu}$ /cm⁻¹: 1483, 1575, 1360, 858. UV spectrum, λ_{max} /nm (log { ϵ }): 363.5 (3.24). For ¹H NMR spectrum see Ref. [14].

Table 5. ¹H NMR Spectral Data (δ) of Substituted 1-(5-Nitro-2-furyl)propenes IIIa—IIId

Compound	H-3' (d)	H-4' (d)*	H-1 (s)	CH ₃ (d) ^b	Others
IIIa	6.77	7.54	6.70	2.46	3.81 (s, 3H, O—CH ₃), 6.95 (d, 2H, $J = 9.1$ Hz, H-3", H-5"), 7.57 (d, 2H, $J = 9.1$ Hz, H-2", H-6")
IIIb	6.76	7.54	6.68	2.47	7.39 (s, 1H, H-2"), 7.31 (dd, 1H, $J = 8$ Hz, $J = 2.5$ Hz, H-6"), 6.86 (d, 1H, $J = 8$ Hz, H-5"), 2.24 (s, 2H, CH ₃), 8.50 (s, 1H, OH)
IIIc	6.72	7.52	6.65	2.44	7.24 (s, 2H, H-2", H-6"), 7.55 (s, 1H, OH), 2.27 (s, 6H, 2 x CH ₃)
IIIde	6.53	7.36	6.73	2.52	7.04 (dd, 1H, $J = 4$ Hz, H-4"), 7.23—7.33 (m, 2H, H-3", H-5")

a) J(3,4) = 3.8 Hz; b) J(H-1, H-3) = 1.2 Hz; c) measured in C^2HCl_3 .

2-Aryl-1-(5-nitro-2-furyl)propenes Illa-Illd

To the stirred solution of (*Z*)-*I* (0.5 g; 2.1 mmol) in dry CH_2CI_2 , kept at -10 °C—0 °C, $AICI_3$ (0.4 g; 3 mmol) was added in one portion. After a 5 min period the solution of the respective aromatic amine (3 mmol) in dichloroethane. (10 cm³) was added within 30 min. The reaction mixture was then stirred for another 3 h at -10 °C—0 °C, then poured onto the crushed ice—water mixture (300 cm³) and extracted with dichloroethane. The concentrated extract was chromatographed on a silica gel column, eluted with a toluene—ethyl acetate ($\varphi_r = 3:1$) mixture. The crude product was crystallized from a toluene—heptane mixture. The physicochemical properties and the spectral data of the derivatives IIIa-IIId are summarized in Tables 2—5.

REFERENCES

- 1. Pohland, A. E. and Benson, W. R., Chem. Rev. 66, 180 (1966).
- 2. Behringer, H. and Falkenberg, K., Chem. Ber. 96, 1428 (1963).
- Belyaev, V. F. and Abrazhevitch, A. I., Khim. Geterotsikl. Soedin.10, 1359 (1973).

- 4. Friedrich, K. and Ertel, W., Synthesis 1, 23 (1970).
- 5. Ertel, W. and Friedrich, K., Chem. Ber. 110, 86 (1977).
- Hrabovský, J. and Kováč, J., Collect. Czech. Chem. Commun. 44, 2096 (1979).
- Hrabovský, J., Dandárová, M., and Kováč, J., Collect. Czech. Chem. Commun. 46, 2716 (1981).
- Hrabovský, J. and Kováč, J., Collect. Czech. Chem. Commun. 47, 45 (1982).
- Hrabovský, J., Kováč, J., and Kaprinayová, M., Collect. Czech. Chem. Commun. 51, 1301 (1986).
- Hrabovský, J., Kováč, J., and Považanec, F., Collect. Czech. Chem. Commun. 51, 2013 (1986).
- 11. Berkeš, D., Végh, D., and Kováč, J., Czech. 260 336 (1990).
- Angeloni, A. S. and Pappalardo, G., Ann. Chim. (Rome) 53, 641 (1963).
- Popelis, Yu. Yu., Lipenisk, E. E., and Stradin, Ya. P., Khim. Geterotsikl. Soedin. 1980, 167.
- Dandárová, M., Végh, D., Kováč, J., Goljer, I., Prónayová, N., and Špirková, K., Collect. Czech. Chem. Commun. 51, 889 (1986).
- Gronovitz, S., Johnson, I., and Hornfeldt, A.-B., Chem. Scr. 7, 211 (1975).
- Gronovitz, S., Johnson, I., and Hornfeldt, A.-B., Chem. Scr. 7, 76 (1975).
- Vogeli, U. and von Philipsborn, W., Org. Magn. Reson. 7, 617 (1975).
- Kingsbury, C. A., Draney, D., Sopchik, A., Rissler, W., and Durham, D., J. Org. Chem. 41, 3863 (1976).
- 19. Braun, S., Org. Magn. Reson. 11, 197 (1978).

Translated by D. Berkeš