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Thermodynamic modeling of melts is of great importance in many 
industrial applications involving these high-temperature liquids. Very often, 
melts are multicomponent systems and experimentation becomes more 
expensive and time-consuming with each component beyond binary mix­
tures. It is therefore crucial to use or to develop suitable models for such 
mixtures; of course, for the sake of selfconsistency, the suitability should be 
relative first to the binary systems limiting the multicomponent melt. 

Several models are reviewed for those most simple melts only involving 
either simple ionic species or nonionized components. They are relative to 
binary mixtures and to additive and reciprocal molten salt mixtures, includ­
ing either ions of the same valency or ions of different valency. 

Complex melts are generally obtained from the mixing of an ionic salt 
with a nonionized component; they are characterized by the formation of 
associates contributing to the excess thermodynamic quantities. An ideal 
associated model is reported for mixtures involving two complex species. 

For years the chemical industry has recognized the importance of the ther­
modynamic and physical properties of solution in design calculations in involv­
ing chemical separations, fluid flow and heat transfer. The development of 
calorimetry, mass spectrometry and potentiometry has enabled the experimen­
tal determination of excess enthalpies and heat capacities of melts with con­
venience and accuracy. But even with modern instrumentation, experimental 
measurements of thermodynamic properties have become progressively, more 
expensive and time-consuming with each additional component beyond binary 
mixtures. In the chemical literature, knowledge of binary systems is relatively 
abundant, ternary systems are scarce and higher-order multicomponent systems 
are virtually nonexistent. Naturally, one of the primary goals of research in the 
area of solution thermodynamics has been the development of expressions for 
predicting the thermodynamic properties of multicomponent mixtures. 
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Modeling of high-temperature melts 

High-temperature melts can be liquid mixtures of metals, of molten salts or 
of metals and molten salts. The main problem when modeling is to account the 
actual nature of the solution. In most cases thermodynamic models are of 
interest when the melts involved are multicomponent systems; complete experi­
mental studies are time-consuming and/or cannot be performed on the entire 
composition range. The strategy generally adopted to obtain the thermodynam­
ics of such systems is: 

— either purely estimative; prediction from the properties of lower-order 
systems (components and binary limiting systems), 

— or "estimation-assisted" experimental; a restricted number of selected 
experiments is decided from the afore-mentioned a priori estimations. 

In both cases it is therefore crucial to develop or to use a suitable model. Of 
course, for the sake of self-consistency, the suitability should be first relative to 
the binary mixtures limiting the multicomponent system. 

Though metallic alloys and molten salt mixtures are generally described 
separately, most phenomenological models are not very different and the main 
distinction between these liquid inorganic melts can be considered as dependent 
on: a) the nature of the species present in the melt, neutral or ionic, atoms, ions 
or associates, b) the magnitude of the interactions between these species. 

For ionic solutions, several kinds of additive and reciprocal molten salt 
solutions can be defined according to the nature and the number of involved 
components. A schematic classification is given in Table 1 for charge symmetri­
cal systems and, obviously, it also holds for charge unsymmetrical mixtures. 
Additive systems and reciprocal systems not only represent two distinct types of 
molten salt solutions, but are parallel to two distinct types of metallic systems. 
The first type belongs to the class of additive systems in which either the types 
of positive ions differ and there is one type of anions {e.g. A+, B+//X~) or the 
types of anions differ and there is one type of cation {e.g. A+//X", Y"). This 
class parallels substitutional alloys {e.g. Na + K). This can be readily seen if one 
considers that electrons, at least in a formal sense, are like anions, e.g. 
Na + К % Na + , K+//e~ The second type is a member of the class of reciprocal 
systems which are systems containing at least two types of cations and two types 
of anions {e.g. A+, B+//X~, Y"). The simplest member of this class are ternary 
systems. Reciprocal systems are equivalent to interstitial alloys {e.g. Fe 2 +, 
CrV/tf-.e-). 

Taking into account the nature of these different mixtures, appropriate 
relationships have been proposed for the ideal entropy of mixing. These are of 
primary importance for measuring the deviation from ideality of the other 
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Table 1 

Schematic classification of ionic mixtures 

Ions 

3 ions 
A + , B + ,X" 
or A \ X " , Y-

4 ions 
A \ B \ C + , X " 
or A \ X " , Y , Z ~ 

A+, B + , X , Y" 

5 ions 
A+, B + , C + , D + , X " 

A+, B \ C \ X , Y" 

System 

Binary 
common-ion 

Ternary 
additive 

Ternary 
reciprocal 

Quaternary 
additive 

Quaternary 
reciprocal 

Basic components 

2 components 
AX, BX 

or AX, AY 

3 components 
AX, BX, CX 

or AX, AY, AZ 

Any 3 among 
AX, BX, AY, BY 

4 components 
AX, BX, CX, DX 

Any 4 among 
AX, BX, CX, AY, BY, CY 

or AX, AY, AZ, BX, BY, BZ 

Table 2 

Formal analogies between symmetrical and asymmetrical binary mixtures 

Symmetrical mixtures 
AX + BX 

Asymmetrical mixtures 
AX2 + BX 

In 

"AX + nR 

AX2 

AH AH' 

2nAX2 + nBX 

AH 

1 + x 

functions of mixing. We give in the following the relationships expressing the 
ideal entropy in some typical ionic mixtures. 

Another distinction among ionic melts lies in the possibly different valencies 
of the ions involved; in the previously quoted systems, all cations, and also 
anions, had the same charge while a mixture like NaCl—CaCl2 includes a t the 
same time monovalent and bivalent cations. Also those solutions obtained from 
at least one covalent salt have different features, generally characterized by 
complex species (e.g. AlCLj, А12СЦ~, in the aluminium chloride-based 
mixtures). 

A considerable amount of experimental thermodynamic investigations re­
vealed that those different classes of melts do not behave identically and, 
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therefore, it is evident that specific thermodynamic models should be developed 
and used to describe their features [1]. 

Simple melts 

Binary mixtures 

Symmetrical mixtures 

Binary alloys (A + B) and common-ion molten salt symmetrical mixtures 
(AX + BX or AX2 + BX2) are often described by quasi-lattice models, the main 
distinction lying in the interaction range of species of the same nature, atoms A 
and В or cations A+ and B+ 

For an ideal solution, the energetic interactions of A (or A+) and В (or B+) 
with their environments are the same and these species mix randomly. Then the 
molar Gibbs energy of mixing is — T ASmix and the ideal entropy of mixing is 

ASmix, id = - R (xA In xA + xB In xB) (1) 

where nA, nB are the amounts of substances of atoms (or ions) in the mixture and 
the x's are the mole (or ionic) fractions defined as 

*A = " А / К + "в) and xB = nB/(nA + nB) (2) 

For molten salt mixtures, this relationship was proposed by Temkin [2] for the 
ideal entropy of mixing and the x\s are the so-called (Temkin) ionic fractions. 

Deviations from ideality (AGex ф 0, y{ ф 1) arise from a lack of balance in the 
interatomic (or interionic) forces between the different species. If the com­
ponents are similar in chemical nature (i.e. Na + К or NaCl + KCl), the 
mixture is nearly ideal. If they differ, the forces are usually greater between the 
atoms (or the cations). For those melts exhibiting small deviations from ideality, 
e.g. weak interactions, in principle any simple model can be used and regular or 
quasi-regular models are generally sufficient. For a great many simple binary 
solutions, simple polynomial expansions in the mole (or ionic) fractions provide 
a good representation of the excess Gibbs energy. 

The surrounded ion model (SIM) [3—5], which is a statistical model of ionic 
mixtures, gives a more realistic description of a melt since it takes into account 
all the possible energetic interactions of A+ and B+, depending on the local 
environment of each ion. Each "surrounded ion" has nearest neighbours of the 
opposite charge on its first coordination shell (X") and next-nearest neighbours 
of the same charge on the second coordination shell (A+ and B+). The same 
result is found for the ideal entropy of mixing which is given by a relationship 
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identical to eqn (7). The most interesting features of this model lie in the fact 
that it is able to take into account the asymmetry of the thermodynamic excess 
functions with only two energetic parameters with a physical meaning. The 
previous models, which were based on a pair-wise interaction concept, failed in 
the description of such asymmetries which are observed experimentally. At this 
stage most authors arbitrarily assumed a linear dependence of the "interaction 
parameter" against composition (Hardy's [6] quasi-regular model) or arbitrarily 
used polynomial expansions with parameters without any physical meaning. 
Also the more elaborated Guggenheim's "quasichemical model" [7], though 
able to account for the temperature dependence of the thermodynamic excess 
functions, was unable to account for experimental asymmetries. The SIM, 
which is the most general model, and was also found successful in describing the 
thermodynamics of other kinds of molten salt mixtures, allows the previously 
quoted models to be deduced as particular cases. A quite similar approach had 
been proposed for alloys in terms of "surrounded atom model" [8]. 

Asymmetrical mixtures 

In asymmetrical molten salt mixtures of the type AX2 + BX, the same lattice 
description of the melt implies that the substitution of the A2+ bivalent cation 
by the B+ monovalent cation creates one vacancy on the corresponding sublat-
tice. Several relationships have been proposed for the ideal entropy; they differ 
in the assumptions made on the vacancies. 

If the number of vacancies is assumed to be negligible, e.g. changing a 
bivalent cation with a monovalent cation does not induce a local disorganiza­
tion of the corresponding sublattice, the same result (7) is found for the ideal 
entropy of mixing. 

If the number of vacancies is not negligible and if no particular association 
exists between the bivalent ion and the vacancy, Forland [9] found the following 
relationship for the ideal entropy of mixing 

ASmix, id = - * [2xA In * ; + (1 - xA) In (1 - x'A)] (3) 

where 

*A = nA/(nA + /iB) and xA = 2nA/(2nA + nB) (4) 

The Xj's have been defined by eqn (2), and the x"s are the so-called equivalent 
ionic fractions. 

If the number of vacancies is not negligible and if the bivalent ion and the 
vacancy are assumed to constitute a dimer, Flory [10] proposed for the ideal 
entropy of mixing the relation 
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AS m i x , id = - R [xA In x'A + (1 - xA) In (1 - x'A)] (5) 

The SIM [11, 12] provides, from different theoretical grounds, a relationship for 
the ideal entropy which is identical to the one (5) found by Forland. 

It should be stressed that many authors do not take into account this 
charge-dependent expression for the ideal entropy of mixing but arbitrarily use 
equivalent ionic fractions (4) in the relationships expressing the other functions 
of mixing and Temkin's ideal entropy (eqn (1)). It has been shown [131 that this 
may lead to some inconsistencies. 

The SIM already mentioned for melts including ions of the same valency, was 
extended to asymmetrical mixtures of the kind AX2—BX. For these binary 
common-ion mixtures AX2—BX, the surrounded ion model enabled some 
formal analogies to be evidenced between symmetrical and asymmetrical binary 
common-ion mixtures (Table 2). 

Ternary mixtures 

Additive ternary mixtures 

Models have been developed enabling to calculate the properties of ternary 
systems (alloys or common-ion [14, 15] and reciprocal [16, 17] molten salt 
solutions) from the binary coefficients. Empirical ternary coefficients may also 
be included in these equations. 

As was discussed earlier, a binary molten salt system contains three kinds of 
ions, e.g. A+ , B+//X~ Of the three ionic components, only two are indepen­
dently variable because of the constraint imposed by electroneutrality 
nA+ + nB+ = nx~. Ternary ionic systems contain four ions which can be con­
stituted in three different ways A+ , B+ , C+ / /X" or A+ / /X", Y~, Z" or A+ , 
B+//X ", Y" The first two are additive ternary systems and the last is a ternary 
reciprocal molten salt mixture. There are only three independent component 
salts from which one can make up the solution. 

Ternary, quaternary, ..., Mh-order additive molten salt mixtures are ionic 
systems containing 3, 4, ..., TV ions of the same species (cations or anions) and 
one ion of the other species (anion or cation). Of the 4, 5, ..., (N + 1) ionic 
constituents, only 3, 4, . . . , Ware independent because of the constraint imposed 
by electroneutrality nA+ + nB+ + nc+ + = nx- + nY- + 

The binary models provide reasonable estimates for several systems of practi­
cal importance and they also address the problem of how to report experimental 
data. Enthalpies of mixing, vapour pressures and other solution properties are 
worthless unless they are transmitted from the experimentalist to the design 
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engineer. Mathematical representation provides a convenient method to reduce 
extensive tables of experimental data into a few equations and this is of crucial 
importance for multicomponent systems. 

This section will be devoted to several of the empirical equations or models 
that have been suggested for parametrizing and predicting mixture data. 

Redlich and Kister [18] proposed an expression for the excess Gibbs energy 
of mixing of a ternary mixture 

AG- = xxx2 X (Gf)i.2(*i - х2У + *,*з Z (GDi.3(*i - *з)'' + 

+ * 2 *з1(С, е х ) 2 ,з(*2-*з) Г ' (6) 

which provisions for additional ternary parameters. The initial popularity of the 
Redlich—Kister equation arose because the first parameter (Gox)i,2 could be 
determined conveniently from the experimental data at JC, = 0.50 as 4 AGfx

2-
Remember that the computers were not available during the 1940s and the 
majority of experimental data were graphically presented in the literature. The 
Redlich—Kister equation provided a means to transmit data from the experi­
mentalists to the chemical engineer designing distillation columns. It is common 
to predict the properties of a ternary solution phase by a simple summation of 
the binary expressions, when they obey the regular solution model. Several 
"geometric" models have been proposed which differ in the geometric weighting 
factors of the binary contributions. 

Köhler [19] proposed an equation for the excess Gibbs energy of mixing of a 
ternary solution 

AGex = (x, + x2f AGfr + (*, + x,)2 AG» + (x2 + x3)
2 AG2

ex
3 (7) 

in which AG^ refers to the excess Gibbs energies of the binary mixtures at a 
composition (x,0, JC,0) such that JC? = 1 — xf = JC,/(X, + Xj). Kohler's equation is 
symmetrical in that all three binary systems are treated identically. Its numerical 
predictions do not depend on the arbitrary designation of component number­
ing. 

Colinet [20] established a slightly more complex relationship for expressing 
the thermodynamic excess properties of multicomponent systems 

AGex = ZI^0-^)"1(AG-)xy (8) 
' j 

in which (AG") x]s are calculated from the binary data at constant mole fraction 
Xj. This equation, although perfectly symmetrical, requires the addition of the 
thermodynamic properties at six different binary compositions for a ternary 
mixture. 
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Muggianu [21] also developed a geometrie model with different weightings of 
the binary contributions 

AG- = £ £ x,(l - л^-ЧДСГЛ,.* (9) 
i J 

So far all the three methods that have been discussed treat the components in 
the same way and may thus be characterized as symmetric methods. However, 
sometimes there may be a physical reason to divide the component elements into 
different groups. For instance, if components 2 and 3 are similar to each other 
and differ markedly from component 1, then one should expect the binary 
systems 1—2 and 1—3 to be similar and it may be advantageous to describe the 
ternary 1—2—3 system in such a way that the expression would reduce to the 
binary expressions if one could make 2 and 3 identical. A numerical method has 
been proposed by Toop [22], which has this asymmetric property. It yields the 
following equation for the excess Gibbs energy of mixing 

AGex = JC2(1 - jc,)-1 AGf*2 + JC3(1 - x,)"1 AG,e*3 + (1 - JC,)2 AG2

e*3 (70) 

in which the AG" refer to the excess Gibbs energies for the binary mixtures at 
compositions (JC,°, xf) such that x,° = x, for the l—2 and 1—3 binary systems 
and x2° = x2/(x2 + x3) for the 2—3 binary system. Eqn (10) possesses a desirable 
mathematical form since it is independent of binary parametrization AG". 

Other asymmetric "geometric" numerical methods have been proposed by 
Hiller t [23]. Very recently, Wang et al. [24] reviewed nine regular-type ternary 
models with different weight factors and proposed a new generalized model. The 
analytical expression of this general model may be given by 

AGJSx(*A, *в, *c) = I I I Aľij> - ^ т G i " ( 4 ) > *к$) in) 
J 'J Xi(ij)*j(ij) 

where i = A, j = B, k = C; i = B, j = C, k = A or i = C, j = A, k = B. lx] = 1, 
2, ..., /ý; x-x and AG**x(.xA, xB, xc) are respectively the mole fraction of com­
ponent i in the A—В—С ternary system and the ternary excess molar Gibbs 
energy; xi(^ and G"(xfy, x-^) are the corresponding binary properties at the 
/jj-th point along the i—j binary composition line (Fig. 1). Here 

v<'ü> - 1 _ XW - l + *i + *i + AiľÍj)*k ( n . 

The weight factors of A^ still depend on the regular solution assumption, while 
those of $j are independent of it and only follow the conditions 0 < /% < 1, 
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This proliferation of similar expressions becomes confusing especially when 
the equations are encountered for the first time. There is no preferred way of 
knowing which method will provide the best predictions for a given system. The 
fact that so many empirical equations have been developed suggests that no 
single equation can describe all types of systems encountered. 

Fig. 1. Geometric illustration of the binary compositions used in the Wang model to calculate 
thermodynamic properties at a particular ternary composition. 

Differing from the previous empirical equations in that they are based on a 
physical description of the melt and on statistical mechanics principles, some 
models also provide expressions able to predict multicomponent properties in 
terms of lower-order interactions. 

The SIM [15, 16] yields an equation for the excess enthalpy of mixing of the 
ternary mixture AX—BX—CX (or A X 2 — B X — CX 2) 

AH = xAxB[xA A # B ( A ) + (1 - xA) A# A ( B ) ] + xAxc[xA A # C ( A ) + (1 - xA) A# A ( C ) ] + 

+ *в*с[*с A#B(Q + (1 - *c) A#c(B)] (13) 

where A # A ( B ) is the limiting partial enthalpy of AX in the AX—BX binary 
mixture and the ideal Gibbs energy of mixing is always 

AGmix> id = RT(xA I n x A + xB Inx B + xc I n x c ) (14) 

For additive asymmetrical ternary mixtures (AX2 + BX + CX), taking into 
account the analogies shown in Table 2, eqn (13) obtained for symmetrical 
additive ternary mixtures becomes 
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7 ^ - = хкх'в\х'в ^ ^ + (1 - *в) AtfB(A)~L;*a*c ДЯВ(С) + 
1 т xA L 2 J 

+ (1 - xc) АЯС ( В )]xíx'A[xA АЯС ( А ) + (1 - x'A) АЯА ( С )] (15) 

with 

v ' — A • v ' — * B • v-' — ^ C 
Ад — ^ , Л В — ^ , Л С — 

1 + XA 1 + XA 1 + XA 

The conformal ionic solution model [25] also gives a relationship for the 
excess enthalpy of mixing of a ternary solution 

A H = Z Z fl/,y*/*y + Z Z *и*/Ч + Z Z cijx?x? + PXAXBXC + Z Z Z QixfrjXk 
' j j ' j i j k 

(16) 

The coefficients aij9 bij9 and cUj are evaluated from data on the three binary 
subsystems. The coefficients P and Qf of the "ternary" terms are calculated from 
the binary data. 

Very recently, Hoch and Arpshofen developed a model which is applicable to 
binary, ternary and larger systems [26, 27]. It was derived originally by consider­
ing complexes in the solution, and the A—В bond strength (between species A 
and B) was made dependent on the presence of other atoms in the complex. The 
model was applied to metal—salt [28], metal—metal oxide [29, 30], silicate 
[31, 32], metallic [33] systems and ZrF4-based fluoride mixtures [34]. For a 
binary system the basic equation for the enthalpy of mixing is 

А Я = WN(x - xN) (17) 

The term TV is an integer (2, 3, 4, etc.), W is the interaction parameter and x is 
the mole fraction of the component so that the maximum of АЯ (either positive 
or negative) is at x > 0.5. The quantity N is chosen such that W, determined 
from the thermodynamic data, is independent of the composition. 

The signs of the limiting partial enthalpies obtained from eqn (17) are 
determined by W. In other words, one interaction parameter describes one type 
of interaction or reaction in a system. If two reactions exist in the binary system 
such as the MgO—Si02 [35], where a strong compound-forming tendency exists 
on the magnesia-rich side (Mg2Si04) and a miscibility gap exists on the Si02-rich 
side, then two interaction parameters, an attractive W and repulsive U, are 
needed. Each has its major effect at different compositions with different depen­
dence on composition (Nw and x in one case, Nv and у in the other). Thus 

АЯ = WNw(x - xNw) + UNv(y - yNu) (18) 
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W and U are determined by least-square analysis; confidence limit and error in 
W and U are also calculated. 

This model was extended to ternary or larger system by evaluating the effect 
of each limiting binary system in the multicomponent mixture. Up to this point 
the primary emphasis has been on predicting multicomponent properties from 
binary data; several of the empirical expressions proposed during the past 
40 years were summarized. These expressions also served as the point-of-depar-
ture for the mathematical representation of multicomponent excess properties. 
Differences between the predicted values and experimentally determined values 
are expressed as 

(AZř,\3)exP - (AZfraU = *i*2*3ßi.2,3 U9) 

with ß-functions of varying complexity. The abbreviations exp and calc indicate 
experimental and calculated, respectively. For most systems commonly encoun­
tered, the experimental data can be adequately represented by the power series 
expansion 

ßi.2,3 = Л2.3 + I*í;2(*, - xif + М з ( * 1 - *э)Гу + 5Х*з(*2 - *э)'* (20) 
i j к 

though it is unlikely that the data for multicomponent systems will be obtained 
with sufficient precision to warrant more than a few parameters. 

Reciprocal mixtures 

The A+,B+//X",Y~ reciprocal mixture is also a ternary mixture; there are 
four constituent salts (AX, BX, AY, BY), but only three of them can be chosen 
as independent components: AX, BX, AY or AX, BX, BY or BX, AY, BY or 
AY, BX, BY. Therefore a solution which contains a given amount of A+, B+, 
X" and Y~ ions can be made in four different ways. 

Reciprocal systems must be represented by a square while the composition of 
usual ternary systems is obtained from a triangle representation. The addition 
of any component to a solution varies the composition linearly towards the 
corner of that component. 

Consider a mixture inside the two triangles AX—BX—BY and AY—BX—BY 
(Fig. 2): it can be made up of positive quantities of each of these three. On the 
other hand, to make up this composition from AX, AY, and BX and to get out 
of the triangle AX—AY—BX one must subtract AX from an AY + BX mix­
ture. The activity and chemical potential of all four salts, however, are defined 
and are the same no matter how the three components were chosen. 
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B X Fig. 2. Composition diagram of the A + , B+//X~, 
Y~ ternary reciprocal system. 

BY 

The Gibbs energy of mixing of such systems was first deduced by Flood, 
For land, and Grjotheim [36] 

AGmix = RT(xA In xA + xB In xB + xx In xx + xY In xY) ± x^x, AG0 (21) 

where AG0 is the standard Gibbs energy change for the metathetical reaction 

AX + BY <=• AY + BX (A) 

and ij is the salt which is not a component. This last term expresses the idea that 
the three components, in effect, "react" to form the last constituent. The + sign 
is for the case when ij is AY or BX and the — sign is for AX or BY. Everything 
beyond the last term given in eqn (21) is the same no matter how the solution 
was made up. 

Forland [9] improved the original FFG theory by including four binary 
interaction terms in (21) 

AGmix = RT(xA \nxA + xB lnxB + x x lnx x + xY lnxY) ± 

+ xxx} AG + ^A-̂ B-̂ X^X + XAXBXYA<Y + xxxYxAA,A + XXXYXBAB (22) 

with the interaction parameter Xx in the i-common-ion binary mixture. 
Later, Blander and Yosim [25] generalized the conformal ionic solution theory 

[37, 38] which had been applied to binary molten salt mixtures by Reiss, Katz 
and Kleppa [39]. They found for the Gibbs energy of mixing a relationship 
identical to (22) and added a nonrandom term to this equation; this correction 
term was only taken by analogy with the one obtained from the quasi-lattice 
theory [40] developed for binary mixtures. 

AGmix = RT(xA \nxA + xB lnxB + xx 1плх + xY lnxY) ± 

i -^•Xj LA\j ~\~ XAXBXXAx ~\~ XAXBXYA>Y ~\~ XXXYXAA*A ~\~ XXXYXBA,B ~j~ XAXBXXXY/1 

(23) 

with Л = — ( — AG°)2/zRT (z is the cation—anion coordination number). 
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The SIM was also applied to ternary reciprocal mixtures [11, 12]. The equa­
tion found for the Gibbs energy of mixing is 

AGniix = RT(xA \nxA + xB lnxB + xx lnx x + xY lnjcY) ± 

± XjXj AG0 + xA AG? + JCB AG^ + xx AGX

X + xY AG? + xAxBxxxYA (24) 

with the excess energy of mixing AG" in the i-common-ion binary mixture, 
A = — ( — AG°)2/2zRT. It should be stressed that eqn (24) is able to take into 
account experimental asymmetries in binary systems and contains the nonran-
dom term Л which has been calculated and not estimated, by formal analogy, 
as previously. 

The SIM has been applied to asymmetrical ternary reciprocal mixtures (A2+, 
B+//X", Y") [41]. By using the same analogies aforementioned, the equation 
found for the molar enthalpy of mixing is 

AH = xBxx(l + JCA) AH0 + xx A # x + xY AHY + xB A# B + xA A# A + 

+ * A * B * X * Y O + * A M (25) 

where AH0 is the enthalpy change for the metathetical reaction 

1/2A2X + BY <=• 1/2A2Y + BX (B) 

AH, is the excess enthalpy in the i-common-ion binary mixture and 
A= -(AH°)2/2zRT. 

The SIM has also been extended to quaternary reciprocal molten salt systems 
[42]. 

Complex melts 

Under this category we have classified those mixtures in which the mixing 
process gives rise to species different from those in the pure components. For 
instance, alloys like Cs—Au or Li—Pb fall into this category since the melt 
includes ionic species different from the metallic components; also the molten 
salt mixtures made from a ionic salt and of a covalent salt, for instance 
KCl—A1C13, are characterized by complexes, for instance AlCl̂ " and AI2CI7" 

Very few exists on the thermodynamics of such systems. The reason is 
two-fold since, due to very different physical and chemical properties between 
the components of the mixtures, experimental investigations are not easy and 
also theoretical approaches not simple. Some experimental investigations and 
some theoretical approaches were recently performed or are in progress; in the 
molten salt field, for instance, advances are being made for systems containing 
alkali halides and halides of aluminium, rare earth, niobium, tantalum, bismuth, 
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zirconium and also for the very novel low-melting systems containing alumin­
ium chloride and organic chlorides. Most of these investigations are related to 
industrial interests and are parts of national research programs in France, 
China, Germany, India, Norway, Poland, USA. The applications fields are 
mainly the production of the metals by electrolysis of the melts, fabrication of 
glasses in relation with optical fibres, elaboration of new materials, etc. 

A proper description of the features of such melts can be given by models 
based on "associated solution" concepts. Very similar models have been de­
veloped recently and independently in Marseille [43] and in Trondheim [44] 
which are equally successful in describing the thermodynamics of BiCl3- and 
AlCl3-based mixtures. 

Melts including at least one covalent salt may be either partially ionic or 
nonionic. Mixtures obtained from alkali halides AX {e.g. fully ionic salts) and 
transition, rare-earth, actinide, metal halides M,X, {e.g. covalent salts, generally) 
are examples of such melts, generally characterized by the formation of 
heterogeneous ionic complexes such as MyX^^, M{i+l)X\^^, etc. {p (> 0) 
and q {< 0) are the electrovalencies of M and X, respectively). The existence of 
complexes in molten salt mixtures has been the subject of lively discussions in 
the molten salt community [45]. Development of investigation methods of 
structure brought new arguments to the controversy. These complexes contrib­
ute to the entropy of the mixture and should be taken into account to model the 
solution. 

We recently have proposed an ideal associated model to describe mixtures of 
alkali chlorides with bismuth chloride or mixtures of alkali fluorides with 
zirconium fluoride [46]. The excess thermodynamic quantities of the melt are 
assumed to arise only from the formation of complex ionic species. For the 
ZrF4-based mixtures, for instance, the enthalpies A, and the equilibrium con­
stants Kt refer to the reactions 

(M)+ (F)" + ZrF4 = (M)+ (ZrF5)" (Al5 Kx) (C) 

3(M)+ 3(F)" + ZrF4 = (3M)3+ (ZrF7)3" (A2, K2) {D) 

For a mixture made from nx and n2 of ZrF4 and MF, respectively, the amount 
of substances of the species ZrF4, M + , F~, ZrF<r, and ZrF3 - in reactions (C) 
and (£>) is denoted by «f, л2*>

 n*> nf> a n ( i n*-> respectively. Mass and electroneu-
trality balances introduced in the above complex formation reactions establish 
the following relation between the initial melt composition x(MF) and the melt 
composition at equilibrium л:*(MF) 

l+Kx + K2x*2{3-2x*) {26) 

1 + K]X*{2 - x*) + K2x*\4 - Зх*) 
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with x = — and x* = . 
nx + n2 w3*+ nf+ nf 

The enthalpy of mixing is obtained as 

AH = —^— hx + -?£— h2 (27) 
Щ +Щ Л, + Щ 

AH = JC*(1 - **) Kxhx + K2h2x*2 

1 + Kxx*(2 - x*) + K2x*\4 - 3JC*) 

The four parameters Kl9 K2, A,, and h2 are obtained by numerical calculation. 
From the experimental enthalpy data it is possible to evaluate two approxima­
tive values for hx and A2; they are used as the initial parameters hx 0 and h2 0 in 
the iterative procedure. Two arbitrary values are set for the initial parameters 
Kx о and K2 0. For each experimental data set [л:, АЯ(х)], the program solves eqn 
(26) and calculates the solutions JC*. 

A nonlinear regression program, applied to eqn (28), yields optimized values 
of the parameters huu h2 ,, Kx ,, and K2X. If these values differ from the initial 
values, the program iterates with huu h2X, Kxx, and K2X as initial values. 
Convergence is attained after a few iterations. 

Conclusion 

Suitable modeling of high-temperature melts has a crucial importance in the 
present context of thermochemical databanks and information systems. A few 
groups have developed such services which are currently used by scientists but 
also by industrial engineers. The service provided is first of all the data relative 
to a system but also an assessment of these data, through suitable modeling and 
numerical procedures, which result in thermodynamically consistent data and 
phase diagrams and in quantitative prediction of phase equilibria in multicom-
ponent melts. 

The principle of phase diagram calculation is the minimization of the Gibbs 
energy of the mixture under investigation. Several numerical calculation pro­
grams exist so far in Europe and North-America. These programs, developed by 
specialized research groups, differ in the method of description of the envisaged 
system (thermodynamic functions of mixing are described either by empirical 
polynomial expansions or by equations deduced from theoretically based 
models) and the mathematical methods worked out in the search of a minimum. 

For metallic systems, for instance, a very efficient program has been elab-
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orated, and successively improved, by Lukas [47] (Max-Planck-Institute, Stutt­
gart). Least-square methods were developed, which enable all the ther­
modynamic and phase diagram data to be simultaneously optimized and thus 
to provide optimized coefficients in polynomial expansions of thermodynamic 
functions of mixing. 

We have developed in Marseille THERMOSALT [48, 49] which is a ther­
modynamic databank for molten salt mixtures. The previous optimization 
program has been satisfactorily used to calculate the phase diagrams of com­
mon-ion binary [50] or multicomponent [51] molten salt mixtures. 

Modifications revealed indispensable in order to perform such calculations 
with asymmetrical ionic systems. Those were made according to the previously 
quoted theoretical developments; phase diagrams calculations were made for 
systems like CaCl2—CsCl or Na, K//F, S04 [52, 53]. Advances are being made 
in the numerical procedures for complex systems. 
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