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The authors pointed out that beside the heteronuclear associates, type 
A/By, the homonuclear associates, types A, and B7, are also necessary for the 
adequate thermodynamic description of the molten salt systems. With any 
number of associates, types A,, By, and A7By, being considered, the explicit 
formulas for calculation of the partial molar excess thermodynamic func­
tions extrapolated to the infinitely diluted solution for components A and В 
were obtained in the system A—B. 

The trial calculations have proved that it is necessary to consider the 
homonuclear associates, types A, and By, not only from the theoretical point 
of view, but also that of the practice even if the stability of the heteronuclear 
associates, type A,By, is much greater (with more orders of magnitude) than 
that of the homonuclear ones. The possible methods of determination of the 
model parameters have been also discussed. 

In order to describe the thermodynamic functions of liquid mixtures 
Dolezalek [1] firstly assumed that the interactions between the constituting 
components result in associates. Prigogine and Defay [2] created the theory of 
associated solution models, which was used until the end of the sixties exclusive­
ly for the thermodynamic description of systems at low temperatures, mainly for 
solutions containing organic components. 

The application of the associated mixture model to the molten salts started 
in the last 20 years [3—11]. In the early seventies the "ionic" form of the 
associated solution models was developed [3—5], in which the excess mixing 
functions were calculated related to the ideal ionic Temkin's model [12]. The 
common feature of these models in the M'X—M"X2 systems (where M" is a 
bivalent metal and X is a halogen element) was the assumption of the existence 
of M"Xl~ complex anions (associates), when the M"X2 content was low. Ac­
cording to Pelton [3] this complex anion exists in the whole concentration range, 
moreover, the pure M"X2 melt consists of 50 % M"Xl~ anions and 50 % M" 2 + 

cations. The model of Flengas and Kuchárski [4] differs from that describing the 
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pure M"X2 melt in entirely dissociated form (M" 2 +, X ), while Maroni and his 
coworkers [5] supposed the existence of "polymers" (M"X2)P in pure phase 
M"X2. 

The spectroscopic investigation of Volkov [13—15] and other researchers 
proved unambiguously that M"X5" complex anions are formed really in the 
mole fraction interval 0 < x(M"X2) < 0.33. At the same time it was also proved 
experimentally that in a given M'X—M"X2 system the stability (and the ther­
modynamic and kinetic parameters) of the Nť'Xj" complex anions is deter­
mined by the interactions arising between this complex anion and the M/ + 

cations settled in the outer ionic sphere. It follows from this that the models may 
be and must be constructed on the basis of the M2[M"X4] heteronuclear com­
plex instead of the M"Xj" complex anion, and so, if M'X is denoted as A and 
M"X2 as B, the model applied to the classic, "molecular" form of the model 
A—A2B—B. So, the associated solution model was applied to the molten salts 
in this form [6—11] from the middle of the seventies and, in this manner, the 
mathematical apparatus used for calculations became simpler, as well. 

The researchers applied the ideal [6—8, 10], or in some cases the regular 
[9, 11] associated solution models to molten salt systems. The use of the latter 
one is advantageous especially in cases, when the mixing of the components is 
restricted in the melt phase, i.e. d2G/dx2 < 0 (as e.g. in the LiCl—KCl—A1C13 

system [9]); and d2G^/dx2 < 0 (as e.g. in the MCI—A1C13 system where i = A1C13 

[11]), because from the ideal associated solution model the values of both 
d2G/dx2 and d2G*/dx2 can be exclusively positive. 

But, in general, the use of the ideal associated solution model is more 
advantageous, because its mathematical apparatus is more easy to survey and 
the equilibrium constants connected with the formation of complex compounds 
can be determined independently of the model. The experimental data can be 
described by both these methods using the same number of parameters nearly 
with the same accuracy (see e.g. the ideal associated mixture model of Wasai and 
Mukai [16], as well as the regular associated one of Sommer [17] for molten 
metallic systems). In the ideal models the secondary effects are approached by 
means of a less stable complex instead of the "interaction parameters" used in 
the regular models. In the systems investigated by the authors this less stable 
complex is the AB in general, and the more stable one is A2B [6—8]. We can say 
formally that AB is the product of the particular dissociation of the A2B 
complex. 

Let us now proceed to discussing the concentration range being rich in M"X2. 
According to [13—15] the heteronuclear complexes are turning more and more 
into multi-homonuclear ones in the mole fraction interval 0.33 < x(M"X2) < 1, 
i.e. the following complexes appear: M2[MpC6], M'n<2[MpX2p + n]. At the same 
time, (M"X2)p polymeric system can be found in the pure melt phase, in which 
the two neighbouring M" 2 + ions are connected by X~ bridges. 
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According to Volkov [13, 15], the notion of thermodynamic and kinetic 
constants becomes meaningless for these multi-homonuclear complexes. His 
opinion was supported by experimental results, that the values of various 
structure-sensitive parameters (activity coefficient y-, magnetic susceptibility #m, 
molar absorption coefficient £ and the half width of band of electronic absorp­
tion spectra 51/2) are not constant in the given concentration range in contrast 
to the diluted M"X2 solutions. 

According to our opinion the conclusion obtained from these experimental 
data is not acceptable. Namely, the yx, %m, £, and <S1/2 values are constant in the 
diluted M"X2 solutions only because more than 90 % of the M"X2 component 
is only found in one type of complexes: M2[M"X4]. On the other hand, in the 
concentrated solution of M"X2 one can find various M/

n<2[Mf
p
,X2p + n] and 

(M"X2)P complexes the stabilities of which differ from each other, but not very 
much. So, the values of such macroscopic parameters as yi5 %m, £, and S]/2 will 
be changed in the case of the changing of the M"X2 concentration even, if we 
suppose that all the complexes denoted by concrete parameters p are imagined 
as individual ones with their own thermodynamic and kinetic constants, and, 
consequently, they are in equilibrium with each other and with the monomers 
M"X2. So, according to our opinion, there is a reason for speaking about the 
equilibrium concentration of the monomers and of various Bp polymers in the 
pure M"X2 phase at given temperature. The proportion of the monomers will 
increase and the average length of the "polymers" (parameter p) will decrease 
elevating the temperature. 

The same conception is related to both pure melt phases M"X2 and M'X. The 
formation of homonuclear complexes in alkali-halide melts has been supposed 
by Smirnov and coworkers [18] in their "autocomplex" model. Since then in the 
last 20 years the existence of the М^[М'Х„ +,] "autocomplexes" has been proved 
as a result of a lot of experiments, and their supposition has also been proved 
that energetically the formation of the n + 1 = 4 complexes, i.e. the tetrahedral 
configuration, is the most probable one [19]. 

Consequently, on the basis of experimental results in the M'X—M"X2, i.e. 
A—В systems, it seems to be reasonable to take into consideration the homonu­
clear complexes (A„ and Bw) in addition to the heteronuclear А„ВШ ones, as well. 
At the same time in the publications using the molecular form of the associated 
mixture models [6—11] the homonuclear complexes have not been considered 
yet. Moreover, the authors started from the values of partial thermodynamic 
functions extrapolated to the infinitely diluted solutions of the A or В (eventu­
ally both) components for the empirical determination of the equilibrium values 
of heteronuclear complexes notwithstanding the fact that, as we can see later, 
these values are depending on the equilibrium constants not only of the com­
plexes A„Bm but also of the An and Bm type. If we do not take into consideration 
the effect of the A„ and Bm complexes the calculated by this manner equilibrium 
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constants referring to the AnBm complexes will differ from that measured or 
calculated independently of the thermodynamic mixing data. It means that the 
data used in the model and the real ones will always be inconsistent. 

In order to solve this contradiction in this paper — as a first step — the 
authors make an attempt to determine the values of the various partial molar 
excess thermodynamic functions extrapolated to the infinitely diluted solution 
using the ideal associated solution model, taking into consideration both homo-
nuclear (A„, Bw) and heteronuclear (A„BW) complexes. Consequently we will 
consider the equilibrium system which contains complexes of optional quality 
and quantity, which are in equilibrium with each other and with the A, and B, 
monomers. The model of the system is 

n N M m 

A,; I A,; X I A/B^ I B,; B. U) 
/ = 2 / = 1 У = 1 у = 2 

Determination of the equilibrium mole fractions in pure phases A and В 

Let us consider a pure phase A of nA quantity in which (лг — 1) homonuclear 
A, complexes are present beside the A, monomers. The equation 

лА = < + Ž <Ч (2) 
i = 2 

connects the equilibrium amounts of substances n%. with nA. All the complexes 
being in equilibrium with all the other (n — 2) complexes and with monomers 
A,, the following, altogether (n — 1) independent chemical equilibriums can be 
written 

/A, = A, (J) 

in order to characterize the equilibrium of the system. As the condition of the 
(n — 1) equilibrium, (n — 1) independent mathematical equations must be writ­
ten in the following way 

*A, = < / ( < ) ' (4) 

where KA is the equilibrium constant of the A, complex determined by equilib­

rium (3), and Хд is the equilibrium mole fraction of the A, complex in pure 

phase A. 
So, n unknown quantities, which are the equilibrium mole fractions of the 

monomer and the complexes, can be found in the system of equations construc­
ted from eqn (2) and from (n — 1) eqns of (4) type. If the values of equilibrium 
constants KA as parameters are known, the equilibrium mole fractions in pure 
phase A can be determined. 
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Analogously, we need the values of equilibrium constants of (m — 1) By 

complexes for the calculation of the equilibrium mole fractions of the monomer 
B, and (m — 1) homonuclear complexes B, in the pure phase В of nB quantity. 
In this case eqns (2—4) will be modified in the following way 

«в = < + Ž J< (2a) 

yB, = В, (3a) 

KUJ = x0

Bj/(x°Biy (4a) 

Determination of the equilibrium mole fractions in the A—В system 

If we mix {лА} mol of pure phase A and {nB} mol of pure phase В we get a melt, 
the composition of which will be determined by eqn (1). Let us denote the 
equilibrium amounts of substances in such an equilibrium system with nk, where 
the index к denotes any of the components, listed in eqn (1). 

The following balance equations are valid between the initial and equilibrium 
amounts of substances 

n N M 

ПА = nA] + X inA, + Z Z InAfBj 
/ = 1 У = 1 

N M 
(5) 

«B = «B, + Z JnB. + I Z Jnb,Bj 
j = 2 I = 1 J = I 

The total amount of substances of the equilibrium solution is 

n m NM 

«s = «A, + «В, + Z П\ + Z ЯВ:; + Z Z ЛА,В, О5) 
i = 2 j = 2 / = 1 J = 1 

In this case the equilibrium mole fraction of component к can be expressed as 

* k = ^ (7) 

The complexes are in equilibrium both with each other and the monomers in the 
system, therefore NM independent chemical equilibriums of 

/ A ^ / B , = A ;B y (8) 

type can be written beside (n — 1) eqns of type (3) and (m — 1) eqns of type (3a). 
The conditions of equilibriums of types (J), (3a), and (8) are as follows 

KA=xAJ(xAy (9) 
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KB. = xBJ(xBiy (10) 

KAlBj = xAiBj/(xAiY(xBy (11) 

The integral molar excess mixing functions 

When the mixing process of components A and В is accompanied by forma­
tion of heteronuclear and by dissociation of homonuclear complexes the integral 
molar excess mixing functions A YE contain two terms 

A r E = A7ass + Arc

E

0nf (12) 

where A 7ass is connected with the formation and dissociation of the associates, 
and A YE

nr is connected with the configuration entropy. 
The AYE functions, the values of which are equal to zero for the ideal 

solutions (e.g. if Y = Я, or V, or (дН/дТ)р = Cp, or (dV/dT)p = Д etc.), do not 
contain a configuration term and in this case АУЕ = AFass. 

Firstly, let us examine the Aľass term of eqn (12). A two-phase system is 
given. One of the phases contains {nA} mol of pure component A, the other one 
contains {nB} mol of pure component B. The integral function, which charac­
terizes the initial state of mixing process, related to one mole of the system can 
be written as follows 

AY . = — L 
*-* Á ass, mit 

« А + " В 

t <Atf,+ Ž <АУ»1 (75) 
'=2 y = 2 J 

The final state of mixing process can be characterized by the following integral 
function 

AY fi = 
" ± ass, fin 

1 n N M m - | 

X «А|ДУ»+ £ £ «A/Bj Д « л + I «в, AIÍ, U4) 
i = 2 / = 1 У = 1 j=2 J "A + "B 

where 

AľJ7 = ľ j y - y ľ í (75) 

It follows from eqn (75) that Aľ^ = AY^ = 0, even if A or В are not 
elements but compounds. That is why we have to speak about the "associate 
quantities of formation" which are not equal to the common thermodynamic 
functions of formation from elements. 
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The change of the integral quantity A7ass, accompanied by the mixing 
process, can be calculated as the difference between eqns (14) and (13). 

Let us now examine the second term of eqn (72), the configuration entropy. 
The integral configuration entropy terms, which characterize the initial and final 
states of mixing process, can be written as follows 

— R Г " m ~1 
A S c

E

o n f , i„i, = — I < In < + I < In xl (16) 
и А + л в Ь = 1 y=i J 

п Г n N M m -j 

ASconf,fin = X "A, ln*A,. + 1 I n^Bj ln.XA/B, + Z nB, l n ^ B , + 
nA + nB L/= i /= i /= i 7=i J 

+ R(xA \nxA + xB lnxB) (77) 

The last two terms of eqn (77) are equal to the configuration entropy of the 
ideal A—В solution. The requested quantity ASc

E

nf can be obtained as the 
difference between eqns (77) and (16). The configuration term of the integral 
molar excess Gibbs function can be calculated by the well-known equation 

AGc

E

onf= -rA5 c

E

o n f (18) 

Partial molar excess functions of the component A concerning 
the infinitely diluted solution 

Later on we are going to deal with the requested equations only for the 
component A. The functions for the component В can be obtained analogously 
(see below eqns (30, 31)). 

If the integral molar excess mixing function A YE is known, the partial molar 
excess function for component A can be obtained by the following well-known 
equation 

AY* = AYE + { l - x A ) ^ (19) 
дхА 

If xA -• 0 then А УЕ -• 0 as well, and the requested quantity can be defined as 
follows 

ДГА

Ео° = lim ^ - (20) 
*A-0 ÔXA 

Let us introduce the following quantities 

r чЛА + Пв/ y .. \nA + Пп/ , „ , ч 

•ГА-° dxA * A -o QXA 
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On the basis of comparison of eqns {12, 13, 14, 16, 17, and 20) it follows that 
in order to determine the requested quantities А Уд00 in explicit form the quan­
tities vk and 4 must be determined first. 

Determination of AY^SS 

Using eqns (2—11) and definition {21) the following expressions for vk were 
obtained after circuitous calculations 

v\ = 0 

< =< 

.0 if / > 0 

^ C C ; Í f / = 0 ( 2 2 ) 

vBj =-EEj-x^ 

where v̂  and v£ are the quantities according to Яд. and л£. occurring in eqn (75) 
and connected with the pure phases; Лд. and n™. are the equilibrium amounts of 
substances of complexes A, and B, in 1 mol of pure phases A and B, respectively. 

Cj = K^{xiy CCj = Cjl(\ + £ c y ) 

D =1+ t t / " I K 

Ej = KB.j(xly- ' EEj = Ejl(\ + £ E}) 

F = £ 7 C C y - f U-DEEj 
J = 1 у = 2 

Using eqns (73, 74, 20—23) one can obtain for the requested quantity the 
following expression 

Alt»- = - t < ЛГ°. + £ CQ А¥°А*,+ Í U) - EEj - x°Bj £ ) AľJ 
/ = 2 J=\ j = 2 \ DJ 

(24) 
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From eqn (24) one can conclude that the values of AY^SS can only be 
influenced by the heteronuclear associates 1 mol of which contains 1 mol of 
component A. 

For Y = H and 5, respectively, the А Ук° values defined by eqn (75) will be 
negative for all thermodynamically stable associates, because their association 
heat of formation and association entropy change of formation are negative 
owing to their stability. Consequently it follows from eqns (23, 24) that the 
values of the functions AH£ and AS^ss wiU be shifted to the positive direction 
by homonuclear associates, types A, and B;, and to the negative direction by 
heteronuclear associates, type ABy. 

Determination of Д5д *onf 

On the basis of eqns (2—11 and 21—23) the following expressions were 
obtained in a very circuitous way for the coefficient: £k 

£A = l + l n x A 

£B = - 1 

ÍA. = ( l + l n X A l ) / ( l + j C ; j 

fA| = 0 ( i f i > l ) 

Й, = < l n < ( i f / > l ) 

/ 0 ( i f / > l ) (25) 
СА/ВУ = \ 

X C C y ( l + InxA B j) ( i f / = 1 ) 

X EEj-\-xl±\lnxl+ Z EEj-l 
j =2 D J j =2 

f* 

&, =-^EEj + x°Bj^\nx°Bj-EEj (\fj>l) 

Taking into consideration that 

lim (xAJxA) = D/(l + X Cj) 

lim (xAB/xA) = DCCj 
V.-.0 J 

(26) 
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the following expression for partial excess configuration entropy was obtained 
r / M \ M n 

AS&»r= - Ä ^ l n Z ) - l n 1 + E Cj)+ X C C y l n C y - X < l n x ° ( + 
L V y = i / y = i / = i 

+ [ £ ^ + « s ; - 1 - *s, £ | in*s, - 1 [ ^ + ч | - «g;] in*s,} (^) 

where i? is the universal gas constant. 
It follows from eqn (27) that the value of A5|^ o n f will be shifted to the 

positive direction by the heteronuclear associates, type ABy, and to the negative 
direction by the homonuclear associates, types A, and By. 

Determination of the activity coefficient for component A 
extrapolated to the infinitely diluted solution 

Using eqns (12) and (75) and the well-known relation for activity coefficients 
the following expression can be written 

RT In tf> = Д С Г = AG£„ - T ASfc* (28) 

Using eqns (23, 24, and 27), after the reductions the following rather simple 
expression can be obtained for y£ 

Г? = — ^ г (.29) 

<l+ÍC') 
From eqn (29) it follows that heteronuclear associates, type ABy, cause the 

negative, while homonuclear associates, types A,- and By, cause the positive 
deviation from the Raoult's law. 

If the solution contains only homonuclear associates, types A, and By, and 
their stabilities and stoichiometry are equal, the associates A, increase the value 
y£ more than the associates By do, and the more they do so, the higher are their 
stabilities. If the system contains heteronuclear associates, type ABy, as well, the 
influence of associates By becomes stronger and the higher are the values of ÄľAB 

and J. 

The excess functions for the infinitely diluted solution of component В 

Since the A ľ^00 functions can be obtained analogously as the А Уд00 ones, we 
give here only the final equations for component B, which are necessary for the 
calculations 
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ArB
E»s = - Í nl) АЦ + I CC, ArA°/B + Í Г«»; - ЕЕ-, - je«, Л ДГ° 

У=2 /= 1 i = 2 L ' Z ) ' J ' 

ASB

E*onf= - ^ I n Z T - l n 1 + Z C 7 ) + X C C 7 l n C 7 - X «B01lnxB° + 

+ [Í ЕЕ, + < - 1 - < íl] toxi, - t [fi£i + 4, j ! - < ] ln<J (*» 

r." = D' 

where 
*(,+lc') 

c, = tfA/B(4,)' се, = c,i(\ + Д c,) 

i = 2 

F'= £ /CC,- f (i-l)EE, 

(31) 

i=2 

As it can be seen from eqns (30, 31) the partial molar values of component 
В extrapolated to the infinitely diluted solution are only influenced by the 
heteronuclear complexes 1 mol of which contains only 1 mol of component В 
(i.e. complexes A7B). Similarly, as it could be seen for component A as well, the 
heteronuclear complexes cause a negative deviation while the homonuclear ones 
cause the positive deviation from the Raoulťs law. 

Trial calculations 

We shall try to find out, how the partial molar excess mixing functions 
depend on the number, stoichiometry and thermodynamic characteristics of the 
associates (Table 1). 

We support the generalizations formulated in the preceding sections 
(Table 2). If we do not take the associates A, and B, into consideration it leads 
to great errors even if the stability of the associates, type A7By, is much greater 
(with more orders of magnitude) than that of the associates A, and By. 
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Table 1 

The thermodynamic characteristics of associates used in the calculations at T = 1000 К 

Associate 

A2 

AB 
AB2 

B2 

ЛЯк° 

kJmol-' 

-35.0 
-23.2 

-100.0 
-18.0 

ASk° 

Jmol- 'K" ' 

-12.5 
-7.0 

-23.4 
-4.6 

Kk 

15.0 
7.0 
1.0 x 104 

5.0 

Conclusion 

We have found out that the partial molar excess functions relating to the 
infinitely diluted solution can be influenced considerably by both the associates 
A, and By. Consequently, it is necessary to take them into consideration if we 
want to get an adequate thermodynamic description of the molten salt systems 
M'X—M"X2. At the same time, each new associate increases the number of 
model parameters by two new ones (АЯ°, AS£). Therefore, the introduction of 
the homonuclear associates can be performed in the following ways: 

— taking into consideration only one associate (or some of them) with most 
favourable coordination, e.g. the associate type A4 [18, 19] and/or A6 [20] in 
pure alkali halide melts; 

— taking into consideration such "polymer" associates of infinite quantity 
for which a connection can be created between their formation enthalpies and 
entropies by using only a few parameters, e.g. in pure MnCl2, CoCl2, ZnCl2, etc. 
melts where tetrahedral cross-linked "structures" with undefined length will 
exist [15]. The obtained formulas can be used in both cases. 

For using the associates A, or By in the model as the first step it is necessary 
to determine their thermodynamic characteristics. These data can be calculated 
on the basis of the empirical mixing data of binary (or «-component) systems 
alone. But, the calculations should not be performed on the basis of empirical 
data measured in only one system A—B, because, in this case, a relatively small 
experimental error can cause great errors in the thermodynamic functions of A, 
and B,-. 

Practically, the task is related to that of construction of the table of ionic 
radii. It is necessary to assemble a thermodynamically closed system of quan­
tities (nevertheless the task is much more complicated because of the much 
greater number of the possible phases and because beside the associates connec­
ted with the pure phases the heteronuclear associates must be also taken into 
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The results of the trial calculations 

AH™ ASŽ* АЯв

да A5B

Eoc 

Associate y£ 

kJmol-' Jmol- 'K" ' lcJmol"' Jmol-'K."1 

A2 

AB 
AB2 

B2 

A 2 -B 2 

AB—A2 

AB—B2 

AB—A2—B2 

AB2—AB 
AB2—A2 

AB2—B2 

AB2—AB—A2—B: 

15.3 
-20.3 

-100.0 
1.5 

16.8 

- 5 . 0 
- 1 0 . 0 

5.3 

- 9 9 . 9 
- 8 4 . 8 
- 8 4 . 3 
- 6 9 . 1 

2.9 
- 3 . 0 

- 2 3 . 4 
- 2 . 6 

0.35 

- 0 . 0 5 
- 3 . 7 
- 0 . 8 1 

- 2 3 . 4 
- 2 0 . 5 
- 2 9 . 0 
- 2 6 . 1 

4.4 
0.13 

1.0 x 10"4 

1.6 

7.2 

0.55 
0.47 
2.1 

1.0 x 10"4 

4.4 x 10"4 

1.3 x 10"3 

5.6 x 10"3 

2.0 
-20.3 

0.0 
7.0 

9.0 

- 2 . 9 
- 1 3 . 3 

4.1 

-20.3 
2.0 
7.0 
4.1 

- 2 . 8 
- 3 . 0 

0.0 
- 1 . 5 

-4 .3 

0.25 
- 4 . 5 
- 1 . 3 

- 3 . 0 
- 2 . 8 
- 1 . 5 
- 1 . 3 

1.8 
0.13 
1.0 
2.8 

5.0 

0.68 
0.35 
1.9 

0.13 
1.8 
2.8 
1.9 
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consideration). But, for this purpose, more and more accurate experimental 
data are needed. 
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