Jahn—Teller effect and phase transitions theory

M. BREZA

Department of Inorganic Chemistry, Faculty of Chemical Technology,
Slovak Technical University, CS-812 37 Bratislava

Received 7 November 1989
Dedicated to Professor L. Valko, DrSc., in honour of his 60th birthday

Phase transitions are studied in terms of the theory of consecutive descent
in symmetry due to the Jahn—Teller effect. This theory has been successfully
applied to some transition metal compounds.

N3yyanuce da3bl nepexo0B B COTJIACHH C TEOPHEH MOCIeN0BATEILHOTO
CHIDKEHHs cuMMeTpuH 1o 3¢dexty Sna—Tennepa. dta Teopus OblLia ¢
YCIIEXOM NPUMEHEHA Il HEKOTOPhIX COEIUHEHHH MEPEXOIHbIX METAJIIOB.

The Jahn—Teller (JT) effect represents an important phenomenon in ste-
reochemistry and crystallochemistry. The generally accepted formulation of the
JT theorem [1, 2] consists of the assertion that a nonlinear nuclear configuration
in the degenerate electronic state is energetically unstable (except Kramers
degeneracy). This theorem implies the existence of at least one stable nuclear
configuration in which the electronic degeneracy is removed so that the system
relaxes to an energetically more advantageous configuration.

The static JT effect [3—6] is such a phenomenon when the system under study
is observed in a single stable configuration. The dynamic JT effect [3—6] is
considered in the case of the transition of the system among more stable
configurations. Such a transition may be so fast that only the averaged nuclear
configuration of higher symmetry is registered. It may be difficult or practically
impossible to distinguish experimentally the static and dynamic behaviour of
real systems.

The cooperative JT effect [3—6] is the collective influence of correlated JT
active centres on the crystal structure. As a consequence of their mutual interac-
tion a nonisotropic force field is formed and the distortion in one direction is
preferred. Energetically most advantageous nuclear arrangement in a crystal
corresponds to such a situation when every JT centre is distorted and the
distortions of various centres are correlated. At higher temperatures the JT
active centres may adopt a higher symmetry due to the dynamic JT effect and
the symmetry of JT force field is changed. This change corresponds to a
structural phase transition in crystals. In reality, the situation is more com-
plicated. Lattice vibrations and thermal fluctuations act in order to destroy the
correlation of JT centres. Various defects in crystals, external forces and other
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effects may cause the preference of non-JT symmetry. Thus only a limited
number of the observed phase transitions is a consequence of pure JT effect.

On the other hand, according to present theories only the order—disorder
phase transitions (i.e. destroying the correlations of JT centres as a consequence
of lattice vibrations and thermal fluctuations) are denoted as the JT ones.

Method

In our previous papers [7, 8] a complete classification of possible symmetries
of JT systems for all molecular symmetry point groups was elaborated. This one
is based on the principle of the consecutive splitting of multidimensional ir-
reducible representations (IR) describing the symmetry of electronic terms due
to the descent in symmetry (loss of some symmetry elements) of the system.

Let I', be multidimensional IR (dim I', > 1) describing the actual degenerate
electronic term of original (unperturbed) nuclear configuration of G, symmetry
group. The procedure of determining the symmetries of stable JT nuclear
configuration may be summarized as follows:

i) Let G, be an immediate subgroup of G, and I',,, I',, ... are IR’s of G,
correlating with I, of G,

dim I, = dim I, + dim I, + ... ()

i) If dim I',, = 1 then G,, symmetry group may describe the stable nuclear
configuration.

If dim I, > 1 then the symmetry descent continues and the whole procedure
should be repeated for G,, and I,

The order of the G, group is an integer multiple of its G,, subgroup order
0(G,) = k0(G,) (2

where the little integer k£ corresponds to a number of equivalent configurations
of the subgroup symmetry.

Application of this procedure to 32 crystallographic point groups [9] with
triple and/or double electronic degeneracy has been published elsewhere [7, 8].

The above method is applicable to all symmetries of nuclear arrangements
which allow the degeneracy of electronic states or, in other words, their sym-
metry groups contain at least one multidimensional IR.

This method has been used for investigation of JT centres so far (molecules,
complex ions). Since it is based on the group-theoretical analysis, it is applicable
to crystals as well. Symmetry properties of the crystal are determined by its unit
cell symmetry.
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Real systems are not described by the single electronic state, the populations
of excited states are, in principle, nonzero and increase with temperature.
Moreover, JT centres in the unit cell may be nonequivalent and/or of different
symmetries. Thus, the combinations of all the possible symmetries of electronic
states are to be taken into account. Moreover, the behaviour of real systems is
complicated by defects and other fluctuations, by the influence of various forces
of non-JT symmetry, etc. The system may not be in the thermodynamically most
stable energetic state.

On the other hand, the symmetry descent in 32 crystallographic point groups
is the same for IR’s with the same dimensions. Thus, the degenerate electronic
state of the parent system may be described by reducible representation as a sum
of three- and two-dimensional IR’s (one-dimensional IR’s may be omitted for
our purposes). The symmetry descent scheme for such a reducible representa-
tion is the sum of symmetry descent schemes for individual IR’s.

The symmetry descent to the same symmetry group may proceed in various
ways. As implied by eqn (2), the electronic degeneracy is transformed into the
configuration degeneracy: The same symmetry descent may be caused by k
different changes of nuclear configurations. This number k& depends on the
orders of both the symmetry groups (G,, and G,). If all the JT centres lower their
symmetry in the same way, the number of formula units in the unit cell Z is
conserved and similarly are the related structure parameters. Otherwise Z is
multiplied by small integer &,

Zm = kZZn (3)

where Z, and Z,, are the numbers of formula units in the unit cell for G, and G,
space groups, respectively; k, depends on the number and symmetries of JT
centres in the G, unit cell. Similar relations hold for the unit cell dimensions.
According to group-theoretical criteria all the phase transitions related to JT
effect may be divided as follows:
A. Correlative phase transitions.
The symmetry of JT active centres is changed in the same way. Group-subgroup
relations hold for the space symmetry groups (‘““translationgleiche” t-subgroups
are meant [10]). The number of the formula units in the unit cell is conserved.
B. Reorientation phase transitions.
The symmetry of individual JT active centres is conserved but their mutual
orientations are changed. Point group symmetries (and IR dimensions) are
conserved. Only the space symmetry groups may be changed. The number of
formula units in the unit cell is usually changed.
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C. Noncorrelative phase transitions.
The symmetry descent chains are changed due to the effects of non-JT character.
Group-subgroup relations do not hold.
Correlative phase transitions may be divided as follows:
Al. Pure JT phase transitions.
They are connected with multidimensional IR split.
A2. Dynamical phase transitions.
IR dimensions are conserved.

In reality, there are often combinations of various types of phase transitions,
mostly of A1—B type (reorientation JT phase transitions). This is implied by
eqn (3) and/or by possible nonexistence of some phases.

The symmetry descent usually goes in two or more parallel chains and results
into different symmetries. These may dynamically interact to form some higher
symmetry which corresponds to their supergroup.

This theory does not cover the problem of phase stability conditions. It only
indicates the possibility of the phase existence. Thus only few structure phases
predicted by the theory have been registered.

Results and discussion

In Table 1 some data [11, 12] on various phases of some transition metal
compounds are collected. The collection is restricted only to the compounds
that are known in three or more phases of different symmetries (at least three
different point groups), with well defined temperatures of phase transitions and
with constant composition. The phases are ordered according to decreasing
temperature of stability. All these phase transitions may be explained in terms
of the presented theory as the combination of several chains of symmetry
descent. Table 2 summarizes the shortest possible symmetry descent chains that
include both the parent symmetry and at least one of the observed phase
symmetries.

The use of our theory may be demonstrated by some examples in details:

BaTiO,. This compound is a typical pseudo-JT system [4—6]. Its phase
transitions (except phase V) may be explained as a combination of the symmetry
descent chains (consecutive splitting three-dimensional IR’s) resulting in C,, and
C,, symmetry groups, respectively. T, and D,, symmetry groups are not obser-
ved. Phase V results as a supergroup of C,, and C,, groups due to the influence
of certain admixtures (this phase must be stabilized by Mn admixtures [11]).
This assertion is supported also by large Z value of phase V. It implies that this
phase cannot be the starting point of a symmetry descent chain. Phase transition
I - Il is pure JT one (A1 type), II - III is the combination of Al and B type,
the remaining ones are of C type.
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Table 1

Phase transition characteristics of some compounds [11, 12]
Where appropriate, the range of data of various authors is given for phase transition temperatures

Phase
Compound Phase Symmetry transition T/K

BaTiO, v* D{,-P6,/mmc 6 I - Vv ~ 1330
I 0,-Pm3m 1 nm - 1 = 395
II C),-PAmm 1 m - 11 273
11 C3-C2mm 2 IV - 1 153-.-173

0% C5-R3m 3
NaNbO, I 0,-Pm3m 1 n - 1 =~ 910
I D;,-P4/mbm 2 n - 1Ir ~ 850
I D}/-Cmcm 8 nm - 1Ir ~ 790
II D}}-Pnmm 8 nr - 1 ~ 740 --- 750
Ir D}}-Pnmm 24 m - 1r =~ 620 --- 650

111 D}}-Pbma 8
KNbO, [ 0,-Pm3m 1 n - 1 =~ 710
I C},-P4mm 1 nm - 1I ~ 500
I11 Cii-Bmm2 2 Iv - 11 263

v C;,-R3m 3
Rb,WO, I D3,P3ml 2 I - I 738
I D}¢-Pnma 4 I - 1I 663
111 D}-Pnma 4 Iv - 1 513---568

v C3,-C2/m 4
FeNbO, I D;}-P4,/mnm 1 I - I ~ 1620
II D}!-Pnab 2 n - I = 1270

111 C3,-P2/c 2
LaCrO, I 0,-Pm3m 1 - 1II =~ 1300
II D;,-P6,/mmc 6 I - 1 563

1 D¢-Pbnm 4
K,Mo0, I D3,-P3ml 2 - 1II 713
I D}-Pnma 4 I - I =~ 580--- 590

III C}-C2/m 4
Rb,MoO, I D;3,-P3ml 2 I - II 773
11 D!¢-Pnma 4 1 - I ~ 370--- 570

111 C},-C2/m 4

Pry(MoO,), I D},P42;m 2
11 C5,-C2/c 12 I - II 1260
111 C8,-Pba2 4 I - III 508

Ndy(MoO,); I D3 -P42;m 2
: I C5,-C2/c 12 I - 1II =~ 1230
111 C3,-Pba2 4 1 S 1 498

Sm,(MoO,), I D3,P42m 2
I C5,-C2/c 4 I - II ~ 1180
1 C8,-Pba2 4 1 - I 470
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Table 1 (Continued)

Phase

Compound Phase Symmetry zZ Sramsifion T/K
Eu,(MoO,), I D}-P42,m 2
11 C§,-C2/c 4 1 - I 1054
11 C8,-Pba2 4 I - I 453
Gdy(MoO,), I D},P42,m 2
11 C5,-C2/c 4 I - II  =~1120---1140
111 C$,-Pba2 4 I - 1 ~ 430
Tby(M0O,), I D}, P32,m 2
II C5,-C2/c 4 I - II =1070---1100
11 C8,-Pba2 4 I - I ~ 430
Dy,(Mo00,); I D} P32,m 2
11 C8,-C2/c 4 1 - 1 1048 --- 1078
111 C8,-Pba2 4 1 S 1 418
K,WO, I D3,P3ml 31 - 1 700
I D)¢-Pnma 4 In - I 643
11 C},-C2/m 4
RbIn(WO,), I D!, P3ml 2 1 - 1 1098
Il D¢-Pnma 4 11 - 1 723
11 Ti-Fd3 4
RbPr(WO,), I D%,-P4/nnc 2 1 o 1 ~ 1220
11 D}}-Pbna 4 I - I 1098
111 C$,-C2/c 4
NaFeO, I D:{-P4,2,2, 4 I - I ~1260--1370
i C3-Pna2, 4 1 - I ~ 1030
11 D3 -R3m 3

* Stabilized by Mn admixtures.

NaNbO, and KNbO,. Symmetry descent chains are described in Table 2. It
is interesting that the chains for both the compounds are not identical in spite
of the common starting symmetry space group (not only in the sense of observed
or unobserved phases). KNbO; phase transitions are analogous to the BaTiO,
ones. NaNbO, phase transitions are of B type except two highest ones of
combined Al and B type.

M,(MoO,),. These lanthanoide compounds may be described by the same
symmetry descent chains. The existence of higher symmetry phases at higher
temperatures is probable.

LaCrO;. Phase II of this compound may result as a supergroup of stable D,,
symmetries (compare BaTiO,).

RbIn(WO,),. Phase III of T, symmetry is more stable at lower temperatures
than phase II of its subgroup D,, symmetry. This fact can be explained by
another chain of symmetry descent (D,, and T, must not be in the same chain).
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Table 2

The symmetry descent scheme for phase transitions

Compound dim I', Symmetry descent chains Note
BaTiO, 3 0,-Pm3m - (D,,) — C,-Pdmm — C,,
3 0,-Pm3m - (T,) - C3-R3m Dy, = C;, x Cy,

3 0,-Pm3m - (D,;) - C;-R3m — (C,)
, 3 0;-Pm3m - (T,) - C}-R3m - (C)
NaNbO, 3 O, —» D,, = Dy,
2,3 0, - T, - Dy
2 0, —» D,

KNbO, see BaTiO; (except Dg,)
Rb,WO, 2,3 (0,) = D} P3ml — C3,-C2/m
2,3 (0)) = (T,) = Dy,
3 (0,) —» D3 P3ml
3 (0,) = (Dy) — Dy,
FeNbO, 2 D,, - D,,
2 Dy, = (Cy) — Cy
LaCrO, 2,3 0, - (T)) - Dy, Dy, =~ Dy, x 3
3 0, = (Dy) = Dy,
M,Mo0O, 2.3 (0,) » D} P3ml - C3,-C2/m M =K, Rb
3 (0,) —» D} P3ml
M,(MoO,), 2 Dy) = Dy — Cy, M = Pr, Nd, Sm,
2 (Dgp) = (Cap) = Cy, Eu, Gd, Tb,
K,WO, see M,MoO, Dy
RbIn(WO,), 3 (0,) - Dy,
3 (0) » (Dy) — Dy,
3 (0) = T, = (S

2,3 (0p) = Dy, > (Cy)
RbPr(WO,), see FeNbO,

NaFeO, (0,) = (0) - D,

0,) » (Dy) - D, —» (D)
(04) = (Dy) = Dy,

(O4) = Dy,

2,3 (On) = (T) — Dy,

2,3 (Op) = (0) » D, —» (D)

W W Ww w

I, is the starting multidimensional IR to be split. Space symmetry groups (in Schonflies and
Hermann—Mauguin notation) are listed only if group-subgroup relations hold also for them.
Unobserved phases in descent chains are in parentheses.

Explanations of phase transitions of other compounds may be understood
very simply from Table 2. Some of them can be explained assuming either two-
or three-dimensional IR’s of O, group in the same way. The possibility of O,
and Dy, starting symmetries for the same compounds (explained here as a
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dynamical superposition of static structures at different conditions) is rare and
can be caused by admixtures in crystals (e.g. phase V of BaTiO,).

Conclusion

The phase transitions based on JT effect were studied using group-theoretical
treatment. The theory of consecutive splitting of multidimensional IR due to the
symmetry descent [7, 8] was applied to some compounds of transition metals.
A good agreement of this theory and experimentally observed structures was
demonstrated. New classification of phase transitions according to group-
-theoretical criteria was proposed.

This theory seems to be more general. It may be applied to all compounds
of such a symmetry space group that enables the existence of multidimensional
IR’s. On the other hand, this theory is restricted only to the symmetry properties
of individual compounds. It says nothing about the kinetics and gives only a
little information about the thermodynamics of phase transitions. This theory
is capable to predict all the possible symmetry changes at phase transitions but
only few of them are observed in real systems.
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