An application of neural networks in chemistry

V. KVASNICKA

Department of Mathematics, Faculty of Chemical Technology,
Slovak Technical University, CS-812 37 Bratislava

Received 7 March 1990

Dedicated to Professor L. Valko, DrSc., in honour of his 60th birthday

Basic definitions of the N-layer neural network are given. Partial deriva-
tives of the objective functions with respect to the weight and threshold
coefficients are derived. These derivatives are valuable for an adaptation
process of the considered neural network, the resulting optimal weight and
threshold coefficients are used in the forthcoming active process. The neural
network may be applied as a classifier of objects. The theory is illustrated by
an application of three-layer neural network to the classification of "C
NMR chemical shifts of acyclic alkanes.

JlaHHBI OCHOBHBIE omnperesieHHss N-CJIONHHON HelpoHHOH ceTH. BbuIn
BBbIBEJICHbI YaCTHYHbIE NIPOU3BOIHbIE OOBEKTHBHBIX PYHKIMH KacaroLuecs
BECOBBIX M MOPOTOBBIX KOI(P(PUIUEHTOB. DTH NPOU3BOIHBIE HMEIOT
3Ha4YeHHusl NpHU Ipoliecce afanTald¥ pacCMaTpUBaEMOH HEHPOHHOMH ceTH.
IMonyyeHHble oONTHMAaJIbHbIE BECOBbIE M IMOPOTOBble KO3 PUIHEHTHI
NPUMEHUJINCH B CJIEAYIOLIEM aKTUBHOM Tpouecce. HelipoHHas ceTb MOXeT
6BITH MpHUMeEHEHa B BuAe kiaccubukaTopa oobexToB. Teopus o6bsAcHseTCS
NPUMEHEHUEM TPEX-CJIIOHHON HEHPOHHOU CEeTH MpH KIacCUPUKALMUA XHUMH-
yeckux caBuros 'C SIMP alukiIM4ecKuX ajKaHOB:

1. Introduction

Neural networks [1—3] are computer or algorithmic systems derived from a
simplified concept of brain in which a number of nodes, called the neurons, are
interconnected in a netlike structure. A network is constructed with three or
more layers of neurons: input neurons, output neurons, and often one or more
layers of intermediate elements, called the hidden neurons (Fig. 1).

Each neuron receives input signals via one-way connections from preceding
neurons, and each input is weighted by a variable weight parameter. If the sum
of weighted inputs to a neuron exceeds a certain threshold coefficient, the
neuron will send a signal to another neuron located in the juxtaposed higher
layer.

Unlike conventional computers, neural networks are parallel in their struc-
ture and in the way they process information. A structure of network, in
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particular, the number of layers and the distribution of neurons among layers,
is adjusted so that it is appropriate for the problem under study. The network
is then put through a training (adaptation) process in which the weight and
threshold coefficients are modified recursively by a learning algorithm, based on
a “‘training set” of known data, until the weights and thresholds converge to
fixed values. Assuming that the adaptation process was finished successfully, the
formed network can be used to solve new problems, in a so-called active process.
Unlike the standard computer (von Neumann’s concept of the computer),
knowledge is represented in neural network in a parallel fashion in the form of
weight and threshold coefficients distributed throughout the system.

‘ output layer
Baia hidden layer
flow
input layer
[

Fig. 1. Typical neural network composed of three layers.

Advantages of neural networks relative to conventional algorithms include:
1. their self-learning feature and 2. the ability to generalize. However, there is
also a number of disadvantages. In particular, neural networks /. are poor at
mathematics, 2. they sometimes fail to give correct answer, and 3. they cannot
explain their predictions.

Neural networks do give wrong answers especially when they have been
“trained” in a configuration with inappropriate weight and threshold coef-
ficients from which they cannot escape, or more frequently, when they have been
set-up incorrectly. There may be a wrong assignment between the number of
neurons in the network and the number of identifiable patterns in the data set.
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Another possible reason for failure is an insufficient number of trials in the
training process.

Neural networks are not a new “technology” [4]. The crucial point in this
field is the concept of perceptron [5], widely used for many learning and pattern
recognition algorithms. This concept was the subject of serious criticism [6],
directed especially against its inability to solve certain more complex types of
problems. The field of neural networks has seen a revival [7] in the 1980’s after
it was realized that this criticism was only relevant to very simple type of neural
networks — perceptrons.

Applications of neural networks to chemistry have just to emerge [8]. The first
ones [9, 10] are touching the problem of prediction of three-dimensional protein
structure from data on amino acids. Recently, Chemical and Engineering News
[8] reported a short review communication on a few initial applications of neural
networks in organic chemistry; in particular, the distribution of products of
nitration in a series of monosubstituted benzenes and the prediction of adverse
drug effects have been described.

II. N-layer neural networks

We shall postulate [3] that a neural network consists of neurons that are
vertically structured in N layers (where N > 3) (Fig. 2). The bottom (top) layer
is called the input (output) layer. The layers which are ranged between the input
and output layers are called hidden layers. Two neurons indexed by i and j, are
connected by an oriented edge (i, j), outgoing from the neuron 7/ and incoming
to the neuron j, if and only if (iff) the vertices i/ and j belong to two distinct
juxtaposed layers. Hence, a neuron from the layer p and a neuron from the layer
q are connected by an oriented edge iff ¢ = p + 1. Each edge (i, j), where i (j)
belongs to the layer p (p + 1) is evaluated by the weight coefficient wf. Each
vertex i from the layer p (where 2 < p < N) is evaluated by the t/zreshold
coefficient 9%). It means that the N-layer neural network may be considered as
a special oriented graph the vertices of which are distributed over different
layers; the edges exist only between vertices (neurons) that are from juxtaposed
layers, and finally, its edges and vertices (except of vertices from the lowest input
layer) are evaluated by weight and threshold coefficients, respectively.

The neurons from the same layer (indexed by p, where 1 < p < N) are
additionally evaluated by the so-called activities x\, x¥, .. x“” where n, is the

number of neurons placed in the layer p. These activities constitute the state
vector x? = (x¥, xP, ..., xf{;’). The state vector x'" assigned to the input layer
is called the input state vector, and similarly, the state vector x*) assigned to the
output layer is called the output state vector.
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The state vectors x?, x®, ..., x™ for a given neural network and a given
mput state vector x" are calculated recurrently as follows

x =f<z wi =D x{ =D 4 95”) )

J

fort=2,3,...,Nand i =1, 2, ..., n,. The transfer function f(£) is a positive and
monotonically increasing function which fulfills asymptotic conditions f(&) — 1
for £— oo and f(£§) > 0 for £ > —oo. For instance, these requirements are
simply met if the transfer function f(&) is given as

1
S8 g )]

its first derivative being determined by f"(&) = f(&) [1 — f(£)]. Applying suc-
cessively the formula (/) we calculate from an input state vector @ = x" the state
vector x?, then from x® we calculate x*, and so on; finally we arrive at the

™
» N output layer
(N-1)
¥rq
L))
q N=-1 )
q
(N-2)
Wap
N~
1.?‘}, 2) ,
N-
1P
|
|
i
: > hidden layers
1
|
|
|
o
X 3 Fig. 2. General scheme of N-layer neural
network. A neuron indexed by p and be-
longing to the i-th layer (for2 <i < N) is
evaluated by the threshold coefficient 9.
2 ) Similarly, an edge which connects two

neurons p and ¢ belonging to a pair of

juxtaposed layers indexed by / and i — 1

(where 2 < i< N), respectively, is eval-
1 input layer uated by the weight coefficient w{).
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output state vector xV of the output layer. For fixed weight and threshold
coefficients w! and 9\” such a successive calculation of the output state vector
x™ from the input state vector x" iscalled the active process of neural network.

In general, a neural network with fixed structure and weight and threshold
coefficients may formally be considered as a mapping F which assigns to an
input state vector @ = x'" an output state vector xV’

x(N) — F(x(l)) (3)

Its explicit analytical form may be simply constructed by successive making use
of (1), where the transfer function f'is specified by (2).

Now we focus our attention to the so-called adaptation (learning) process of
a neural network. Thus, for a given pair a/f of input and output state vectors,
we try to find such weight and threshold coefficients that a neural network
response x¥ to the given input state vector @ would be “closely related” to the
prescribed output state vector f. There exist many different approaches how to
realize the above-mentioned vague ‘‘close relationship”. One of them is to
minimize the following objective function '

- (x‘N’ P = ; 4

I\)I—-‘

where = (B, B, .-, B,,). It means that a goal of our adaptation process is
finding such weight and threshold coefficients that minimize the objective func-
tion (4). The so-called backpropagation strategy [3] of the adaptation process of
an N-layer neural network consists in the successive calculation of partial
derivatives OE/Ow{) and OE/0%" in going from the top output layer to the
bottom input layer. In order to evaluate these partial derivatives we have to
know the partial derivatives 0x{"/ow! and 0x{"/09\". After simple but tedious
manipulations we get

(N)
2’;&, = " (1 — x) (5a)
(N)
legk(:) = <Z Zr"m w‘”) (1 —x") (5b)
i I oW

fort=N—-1,N—2, ..., 2, and

(™ )
Oxy/ Oxy/ 0 )
n i
owy o9t
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fort=N—1,N—2, ..., 1. The symbol §, corresponds to Kronecker’s delta,

oy = 1 for j = k and 6 )« = 0 for j # k. The partial derivatives of the objective
function E determmed by the relation (4) are
3 o — gy 2L (7a)
6 i F ow
ox{M
(7b)
asm = LU= J 09"

Introducing (5a, 5b) and (6) into (7a, 7b) we get the final formulae for the first
partial derivatives of the objective function F

oE

O = (7= ) X" (1~ X" (6a)
J
J

fort=N—-1,N—2,...,2,and

OE __0E )
awj(’() 69}"“) !

fort=N—1,N —2,..., 1. We can see that applying these formulae we are able
to calculate successively the partial derivatives 0E/Ow{ and OE/0%" going
step-by-step from the top to the bottom of the neural network.

The partial derivatives (8, 9) are useful in that they minimize the objective
function E by making use of a version of the well-known gradient method [11].
In our actual applications variable metric method [11, 12] is performed satisfac-
torily when the zero-step initial values of weight and threshold coefficients were
randomly generated from the interval (—1, 1).

The above adaptation process of neural network may be simply generalized
also for more than one pair of vectors a/p, i.e. for p pairs of vectors a,/8,, &/,
..., &,/B,. Then the objective function is determined by

P
E=Y E® (10a)

i=1
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BV =~ (< — B (100)

where x!™ is the output state vector of the neural network corresponding to the
preselected i-th input state vector a@;, and ; is the required response of the neural
network assigned to a,. The partial derivatives of E are then equal to the sum
of partial derivatives of E?” evaluated by (8, 9).

For N = 2 the concept of neural network is reduced to a concept closely
related to the so-called perceptron [5, 6]. The formulae (8) and (9) remain valid
even in this rudimentary case of neural networks, and we get

g3

—5 = = ) X (1 =) (11a)
7
=
w

where the upper indices of threshold and weight coefficients were omitted as
unimportant. Assuming that the output layer contains only one neuron and that
the output state vector x® = (x{?) is composed of a dichotomic entry equal
either to one or to zero (when the transfer function f(&) is strongly nonlinear,
ie. f(§) =1 for £ > 0 and f(&) = 0 for £ < 0), then it is easy to show that this
two-layer neural network provides the so-called linear learning machine (or
pattern recognition method), a dichotomic (two classes) classifier often used in
chemistry [13].

In order to get a deeper insight in an adapted neural network (i.e. the weight
and threshold coefficients were already chosen) we introduce the so-called
sensitivities of the neural network. Let us assume that a given input state vector
x"is changed as x" —» x" + Ax", where the “perturbation” Ax" is composed
of entries that are of the first-order smallness with respect to entries of x'". Then
for each single layer the corresponding state vectors x (for 2 < 1 < N) are
changed as x - x” + Ax®. Entries of Ax"” correspond to a response of the
neural network to the “perturbation” Ax‘"; when going successively from the
second layer to higher layers we may trace a propagation of the input “perturba-
tion” Ax‘" throughout the whole ‘neural network. The responses Ax", for
2 <t < N, are well approximated (up to the first order) by

)
Ax(l) ~ Z ,(]) (12)
x(!)
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where the partial derivatives S' = 0x{"/0x!{" will be called the t-layer sensitivities
of neural network. These entities are simply calculated from the expressions (/,
2)

SP=x"(1—x" 3 wi=" s (13)
k

where 1 = 2, 3, ..., N and S|} = §,,. The sensitivities are intuitively interpreted
as follows: if entries S}, for a fixed 2 < 7 < N, have “relatively” very small
numerical values, then the state vector x” is “relatively” insensitive to the
“perturbation” Ax'"; incréasing values of Sy indicate a greater sensitivity of

neural network to Ax'", i.e. a small change in an entry of the input state vector
x""" ' may cause a considerable change in some entries of the state vector x'.

III. N-layer neural network as classifier

Let us consider a universe %= {0,, 0,, ...} composed of objects 0,, 0,, .... Two
mappings @ and ¥ assign to each object o€ % the so-called descriptor vector d
and the category vector c, respectively, i.e. d = @(0) and ¢ = ¥(0). The descrip-
tor vector d = (d,, d-, ...) assigned to oe % is composed of real entries that are
corresponding to preselected ‘““‘descriptors”. The latter characterize the “‘struc-
tural™ parameters of objects from %. Analogously, the category vector ¢ = (¢,
s, ...) of 0e ¥ is composed of real entries corresponding to chosen properties
— categories of the given object. The classification process of objects from % is
based on the construction of a function, which assigns a category vector ¢ to the
descriptor vector d, i.e.

c=G(d) (14)

for each oe #, where d = @(0) and ¢ = ¥(0).

A neural network, used as a classifier of objects from the universe %, consists
of an identification of the descriptor/category vector with the input/output state
vector. It means that for a given neural network a functional form of the
function G from (/4) is known, the only “variable” parameters specifying its
actual analytical form are weight and threshold coefficients. In order to select
these coefficients we divide the universe # in two disjoint sets J (called the
training ser) and its complement #\.7 . The function G is “‘approximated” by the
function F from (3). The weight and threshold coefficients of neural network are
determined in such a way that the output state vector x' = F(x'") is ““closely
related™ to ¢ = G(d). where d = x'" = ¥(0), foreach o€ .7 . In our approach the
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above vague term ‘‘closely related” is realized by the minimization of the
objective function (/0). Furthermore, assuming that this adaptation process was
successfully carried out, the same function F could be used also for the classifica-
tion of an object outside of the training set, i.e. from the complement %\.7 . This
“extrapolation” of the function F, initially constructed in the course of the
adaptation process of neural network for objects from the training set 7
represents a principal step in any application of neural network acting as a
classifier of objects from the universe %. Intuitively speaking, the training set 7
should be selected from the universe % very carefully, its cardinality (i.e. number
of objects) is usually much smaller than the cardinality of the universe %, and
moreover, the objects belonging to J must be sufficiently representative of all
objects from %.

IV. Application

BC NMR chemical shifts of acyclic alkanes

The applicability and effectiveness of neural-network approach will be illus-
trated by three-layer network (composed of nine input neurons, five hidden
neurons, and one output neuron) used as a classifier of >*C NMR chemical shifts
[14] of acyclic alkanes. An alkane molecule with a preselected carbon atom
(corresponding to that one to which the chemical shift is related) may be
graph-theoretically represented as a rooted tree [15] (Figs. 3—5). This rooted
tree will be described by the following nine-dimensional descriptor vector
d=(d, d,, ..., d)) composed of nonnegative integers, d; is the number of those
distinct paths of the length i that are beginning at the root (1 <i < 5), and 4,
number of adjacent (j — 5)-ary carbon atoms with the root (6 <j < 9). Exam-
ples of descriptors are given in Tables 1 and 2. Following Grant and Paul [16],
the chemical shifts § are empirically calculated as follows

5==33 4 Z die + 2 dS(d,, j — 5) (15)

i=1 j=6

where d; and d; are entries of the descriptor vector d, ¢ is an increment of the
carbon atom of the distance i from the considered (root) carbon atom, and S(p,
q) is a steric increment describing an influence of the g-ary adjacent atom on the
considered (root) p-ary carbon atom. Actual numerical values of these incre-
ments are given in literature [14, 16]. The empirical values of chemical shifts
evaluated by (/5) of some alkanes are listed in Tables 3 and 2.

Chem. Papers 44 (6) 775 —792 (1990) 783



V. KVASNICKA

(2-1) (3-1) (4-1) (4-2)
1 2 3 1 2 3 4 1 :!2
(5=1) (5-2) (5 -3)
1 2 3 1 2 3 4 5 1 2 3 4
(6-1) (6-2) (6-3)
6
1 2| | 1 2 3| 1 2 3 4
(6-4) (6-5) (7-1)
6
1 §‘2 |3 4 1 |2 3 4 5 6 1 2| 3| 4 5
(7-2) (7-3) (7-4)
6
1 2| 3 | 1 2 : ZB 1 2 3£
(7-5) (7-6) (7-7)
7
1 : {2 2 4 5 1 2 3| 4 5 6
(7-8) (7-9)

Fig. 3. Schematic plots of all alkanes through C,.
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~

N
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~
[

(7-9)

Fig. 4. All rooted trees assigned to the alkane indexed by 7—9 in Fig. 3. The first five entries d, to
ds of the nine-dimensional descriptor vector d are simply constructed as a number of crossing points
for cut (dashed) lines, e.g. for the tree A we getd, =d, =1, dy=2,and d;, =d; = 1.

We emphasize that the chosen form of the descriptor vector d does not
describe unambiguously the acyclic alkanes (graphs), i.e. it is easy to show two
nonisomorphic trees with the same descriptor vector. The form of descriptor
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vector was suggested in such a way as to be simple and moreover its entries may
be immediately related to chemical shifts via the formula (15).

The training set J for the adaptation process is composed of all topologically
nonequivalent rooted trees assigned to all alkanes through to C, (Fig. 3). It
contains 76 objects — rooted trees which are determined by nine-dimensional
descriptors; the corresponding category vectors are composed of one real entry
from the open interval (0, 1). Here we have to specify more precisely the actual

5 [24.7)
1 2 3 4
[ s [25.3]
[29.9] [30.9] [59.3)
3 & 5
3 4 5
1
1 2 2
A B
1 1
2 3 2
5 4 5
4
3
c

D

E

Fig. 5. Schematic graphs of an alkane C; used as an example of active process of the adapted neural
network. In brackets are given the corresponding chemical shifts.
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Table 1

Descriptors of rooted trees of the alkane indexed by (7—9) in Fig. 4

Alkane d, d, dy d, ds d, d, dy d,
A 1 1 2 1 1 0 1 0 0
B 2 2 1 1 0 1 0 1 0
C 3 2 1 0 0 1 2 0 0
D 2 3 1 0 0 0 1 1 0
E 2 1 2 1 0 1 1 0 0
F 1 1 1 2 1 0 1 0 0
G 1 2 2 1 0 0 0 1 0
Table 2

Illustrative example of active process of adapted neural network for the Cg alkane in Fig. 5

Alkane dl dl d3 d4 dS d6 d7 d8 d9 6cxp (smcr. 5n.n.

299 297 300
309 256 29.0
593 529 585
253 232 236
247 229 232

Mo O
—_ WA -
N — L - W
—_w O N -
wooowN
cocoooco
oNOoO WO
o —0o =00
—o —oo
oo -0 —

meaning of the concept of category assigned to chemical shifts of carbon atoms.
As follows from (2), the transfer function f maps the set £ of real numbers onto
the open interval (0, 1), i.e.

T2 - (0,1

This means that the entries of output state vector x™ belong merely to the
interval (0, 1). That is, a category vector ¢ should be also composed merely of
real numbers from the open interval (0, 1). Since the chemical shifts of carbon
atoms are, let us say, ranged within 5 < § < 50, this interval should be com-
pressed by an analogue of (2) to a subinterval of (0, 1). Such a mapping was in
our studies realized by

1
y=g(x)=m (16)
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Alkane’ Type ) 0, o 0, o5 [ &
-1 Exp.’ 6.5
Incr.* 6.8
N.n.¢ 6.3
3—1) Exp. 16.1 16.3
Incr. 16.2 15.9
N.n. 16.0 16.3
4—1) Exp. 13.1. 24.9
Incr. 13.7 25.3
N.n. 13.4 25.0
4—2) Exp. 24.6 23.3
Incr. 24.5 25.0
N.n. 24.5 23.3
(5—1) Exp. 13.5 22.2 34.1
Incr. 14.0 22.8 34.7
N.n. 13.8 22.4 34.1
(5—2) Exp. 21.9 29.9 31.6 11.5
Incr. 22.0 30.7 32.2 11.2
N.n. 22.0 30.0 31.8 10.6
(5—3) Exp. 27.4 31.4
Incr. 31.6 28.1
N.n. 27.4 31.4
6—1) Exp. 13.7 22.7 31.7
Incr. 14.1 23.1 322
N.n. 13.6 22.6 31.7
(6—2) Exp. 22.7 27.9 41.9 20.8 14.3
Incr. 22.3 28.2 41.6 20.3 14.3
N.n. 22.4 27.9 41.8 20.1 14.3
(6—3) Exp. 28.7 30.3 36.1 8.6
Incr. 29.1 30.6 36.6 8.7
N.n. 29.0 30.3 36.0 8.1
(6—4) Exp. 19.2 34.0
Incr. 19.5 343
N.n. 19.3 33.8
(6—5) Exp. 11.4 29.4 36.8 18.7
Incr. 11.5 29.7 36.4 19.5
N.n. 11.1 28.9 36.7 19.3
(7—1) Exp. 13.7 22.6 32.0 29.0
Incr. 14.1 23.2 325 29.7
N.n. 13.6 22.6 31.9 29.3
(7—2) Exp. 27.0 32.7 379 17.7
Incr. 26.6 334 38.2 17.0
N.n. 26.2 32.7 379 17.1
788 Chem. Papers 44 (6) 775—792 (1990)



NEURAL NETWORKS IN CHEMISTRY

Table 3 (Continued)

Alkane’ Type ) 6, 5 6, S5 O 5,
(7—3) Exp. 224 28.1 38.9 29.7 23.0 13.6
Incr. 22.4 28.5 39.1 29.7 23.4 14.2
N.n. 224 28.2 38.9 29.3 229 13.6
(7—4) Exp. 20.0 31.9 40.6 26.8 1.6 17.0
Incr. 19.8 31.8 40.0 27.2 11.8 17.0
N.n. 19.6 32.1 40.3 26.2 11.5 17.1
(7—5) Exp. 22.7 25.7 49.0
Incr. 23.4 25.7 48.5
N.n. 229 25.6 50.3
(7—6) Exp. 7.7 334 322 25.6
Incr. 9.0 34.1 33.1 26.6
N.n. 8.5 335 323 26.2
77 Exp. 10.5 25.2 424
Incr. 11.8 27.2 42.1
N.n. 11.5 26.2 423
(7—18) Exp. 29.5 30.6 47.3 18.1 15.1
Incr. 29.4 28.1 46.0 17.8 14.6
N.n. 29.5 30.5 474 18.4 14.8
(7—9) Exp. 10.6 29:5 343 39.0 20.2 13.9 18.8
Incr. 11.6 30.0 33.9 39.1 20.6 14.4 19.8
N.n. 10.6 29.5 344 38.9 20.3 14.1 19.6

a) Alkanes are indexed as in Fig. 3. b) Experimental values of chemical shifts measured with
respect to TMS [14], ¢) calculated values by making use of formula (/5) and d) produced by neural
network.

where the constants a and b are determined as follows

= Amin — Amax b= — AXin — Amin
Xmin — Xmax
with
Amin — ll’l Ymin Amax — ]n Y max
1 - Ymin 1= Ymax

The entries x,;, and x,,,, correspond to minimal and maximal values, respective-
ly, of the chemical shifts (in our case we put x,,,, = 5 and x,,,, = 50), whereas the
entries y.;, and y_.. are minimal and maximal values of the “compressed”
chemical shifts (we put y_;, = 0.05 and y,,,, = 0.95); for these actual values of
minimal and maximal entries the constants @ and b are a = 0.1308640 and
b = —3.5987588. An inverse transformation of (16) is
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x=g-'(y)=1<1n J —b) (17)
a l—y

This function is used for a “back” transformation of the output categories of
neural network to actual chemical shifts.

The optimal values of weight and threshold coefficients resulting from the
adaptation process are given in Table 4. The values of NMR chemical shifts
determined by trained neural network are listed in Table 3. This neural network
was also used for the evaluation of chemical shifts of alkanes which do not
belong to the training set J (the active process of neural network already
adapted), e.g. 2,2,4-trimethylheptane was classified (Fig. 5 and Table 2).

From simple inspection of Tables 2 and 3 one may conclude that the used
neural network provides chemical shifts that are more closely related to their
experimental values than those ones calculated empirically by eqn (I5).

V. Conclusion

We have demonstrated that the approach based on neural networks offers
simple tool potentially well suited for classification of objects (i.e. molecular
systems) with respect to their properties. In order to ““translate’ the molecular
structure parameters to a code useful as an input of neural networks, the
parameters are rewritten in a form of descriptor vectors. The neural network is
adapted in such a way that an output state vector (resulting as an image of the
descriptor) is composed of entries — categories that are closely related to the
properties of molecular system under study. The most important step of neural-
-network approach is the so-called active process, where already adapted neural
network is used as a classifier of molecular systems (objects) outside the training
set, the mapping (3) is “‘extrapolated’ to molecular systems that were not used
in the adaptation process. The results obtained by other authors [8—10] and
also the results presented in this communication indicate that the neural net-
works are able to give predictions not available in any other way. Neural-
-network approaches do not replace other forms of computing predictions, but
they promise to be a useful tool for approaching computationally problems that
would not be satisfactorily solved by standard numerical methods.
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