5-Acyloxy-3,4-dichloro-5H-furan-2-ones

*A. KRUTOŠÍKOVÁ, *A. KOREŇOVÁ, *J. KOVÁČ, and *V. KONEČNÝ

Department of Organic Chemistry, Slovak Technical University, CS-812 37 Bratislava

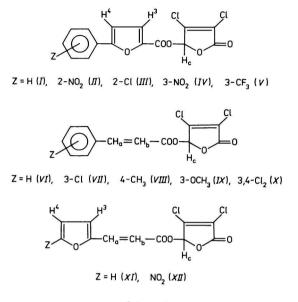
> ^bResearch Institute of Chemical Technology, CS-831 06 Bratislava

> > Received 29 May 1985

Paper published on the occasion of the 45th anniversary of the foundation of the Department of Organic Chemistry, Slovak Technical University, Bratislava

A synthesis of novel fungicidally active 5-acyloxy-3,4-dichloro-5*H*-furan-2-ones prepared by the reaction of chlorides or mixed anhydrides of 5-aryl-2-furancarboxylic and 3-arylpropenoic acids with 5-hydroxy-3,4-dichloro-5*H*-furan-2-one is described.

Описан синтез новых фунгицидно активных 5-ацилокси-3,4-дихлор--5*H*-фуран-2-онов посредством реакции хлоридов или смешанных ангидридов 5-арил-2-фуранкарбоновой и 3-арилакриловой кислот с 5-гидрокси-3,4-дихлор-5*H*-фуран-2-оном.


In the area of novel chemical means against diseases of plants a discovery of system fungicides signifies a great progress. It is known [1] that 3,4-disubstituted 5-acyloxy-5*H*-furan-2-ones possess good fungicidal properties for the inhibition of the growth of phytopathogenic fungi as *Fusarium nivele*, *Tilletia caries*, *Sclerotinia fructicola*, *Botrytis cinerea*.

These types as well as their analogues [2, 3] can be used for application as seed disinfectants mainly for the protection of the rye against fusariosis and of the wheat against its sticky mildew. Also other 3,4-disubstituted 5-alkoxy-5H-fu-ran-2-ones [4-7] and their sulfur analogues [8] are suitable for the suppression of phytopathogenic fungi.

This work deals with the synthesis of new 5-acyloxy-3,4-dichloro-5H-furan-2--ones and the study of their fungicidal properties. Compounds I - XII (Scheme 1, Table 1) were prepared by reaction of chlorides or mixed anhydrides of 5-aryl-2-furancarboxylic and 3-arylpropenoic acids with 5-hydroxy-3,4-dichloro-5H-furan-2-one (mucochloric acid).

Structure of the synthesized compounds was proved by ¹H NMR spectra (Table 2). The ¹H NMR spectra of all compounds have a signal (singlet) of proton on C-5 of 5-hydroxy-3,4-dichloro-5*H*-furan-2-one. The spectra of I-V, XI, XII showed the doublets of protons C-3—H and C-4—H of the furan ring with an

interaction constant $J_{3,4} = 3.4$ Hz. From the interaction constant $J_{A,B} = 16$ Hz of VI—XII it can be concluded that a double bond of propenyl group has an *E*-configuration.

Scheme 1

By testing the compounds for relative fungicidal activity (Table 3) it was found that the compounds IV, VI, IX—XII were in tests against T. caries good active, but none of them was so active as the used standard Vitavax. In tests against F. avenaceum the compound I reached the activity of the used standard captan, however, also the compounds IV, VII—IX, XI, and XII showed a relatively good activity. Against B. cinerea the compounds I—IV and XI were a little less active than the standard captan. The compound XI was against A. alternata active as the used standard captan, nevertheless further compounds I, V, VII—IX, and XII were a little less active. Compounds I and XI were as active as the used standard Dithane M-45 against P. infestans, also the compounds IV, VI—X, and XI exhibited interesting activity.

The compounds I and XI were advanced to further screening.

Experimental

The 'H NMR spectra were recorded with a Tesla BS 487 C apparatus operating at 80 MHz. Tetramethylsilane was used as internal reference.

Chem. Papers 4	
40 (5) 659-663 (1986)	Con

Characterization of the prepared compounds									
ompound Formula	<i>M</i> r			Yield	M.p.				
		С	н	Cl	N	%	°C		
C15H8Cl2O4	323.1	55.75	2.49	2.94		78	89—90		
$C_{15}H_7Cl_2NO_6$	368.1	48.94	1.92	19.26	3.80	75	160—162		
$C_{15}H_7Cl_3O_4$	357.6	50.38	1.97	29.74	5.02	70	94—95		
$C_{15}H_7Cl_2NO_6$	368.1	48.94	1.92	19.26	3.80 3.78	74	182—183		
$C_{16}H_7F_3Cl_2O_4$	391.1	49.13	1.80	18.12		80	139—141		
$C_{13}H_8Cl_2O_3$	283.1	55.15	2.84	25.04		75	93—94		
$C_{13}H_7Cl_3O_4$	315.6	49.17	2.22	33.49		65	92—95 ·		
$C_{14}H_{10}Cl_2O_2$	297.6	56.59	3.39	23.86		65	85—86		
$C_{14}H_{10}Cl_2O_4$	313.1	53.70 53.80	3.22	22.64		68	85—87		
$C_{13}H_6Cl_4O_3$	352.0	44.35 44.32	1.72 1.70	40.28 40.26		70	145—148		
$C_{11}H_6Cl_2O_4$	273.1	48.38 48.40	2.21 2.28	25.96 25.92		60	100—101.5		
$C_{11}H_5Cl_2NO_6$	218.1	41.54 41.38	1.58 1.70	22.29 22.09	4.40 4.32	60	135—138		
	$C_{13}H_{8}Cl_{2}O_{4}$ $C_{13}H_{7}Cl_{2}NO_{6}$ $C_{13}H_{7}Cl_{3}O_{4}$ $C_{13}H_{7}Cl_{2}NO_{6}$ $C_{16}H_{7}F_{3}Cl_{2}O_{4}$ $C_{13}H_{8}Cl_{2}O_{3}$ $C_{13}H_{7}Cl_{3}O_{4}$ $C_{14}H_{10}Cl_{2}O_{2}$ $C_{14}H_{10}Cl_{2}O_{4}$ $C_{13}H_{6}Cl_{4}O_{3}$ $C_{11}H_{6}Cl_{2}O_{4}$	Formula Mr. C115H8Cl2O4 323.1 C15H7Cl2NO6 368.1 C15H7Cl3O4 357.6 C15H7Cl2NO6 368.1 C15H7Cl2NO6 368.1 C15H7Cl2NO6 368.1 C15H7Cl2NO6 368.1 C16H7F3Cl2O4 391.1 C13H7Cl3O4 315.6 C13H7Cl3O4 315.6 C14H10Cl2O2 297.6 C14H10Cl2O4 313.1 C13H6Cl4O3 352.0 C11H6Cl2O4 273.1	Formula M_r C $C_{13}H_8Cl_2O_4$ 323.1 55.75 $C_{13}H_7Cl_2NO_6$ 368.1 48.94 48.92 48.92 $C_{13}H_7Cl_3O_4$ 357.6 50.38 $C_{13}H_7Cl_2NO_6$ 368.1 48.94 48.78 50.30 $C_{13}H_7Cl_2NO_6$ 368.1 48.78 $C_{16}H_7F_3Cl_2O_4$ 391.1 49.13 49.10 49.10 49.10 $C_{13}H_8Cl_2O_3$ 283.1 55.15 $C_{13}H_8Cl_2O_4$ 315.6 49.17 49.07 $C_{14}H_{10}Cl_2O_2$ 297.6 56.59 56.49 53.80 53.80 53.80 $C_{13}H_6Cl_4O_3$ 352.0 44.35 44.32 273.1 48.38 48.40 $C_{11}H_5Cl_2NO_6$ 218.1 41.54	Formula M_r w_i (ca w_i(fou 5.65 C ₁₃ H ₈ Cl ₂ O ₄ 323.1 55.75 2.49 S5.65 2.39 55.65 2.39 C ₁₃ H ₇ Cl ₂ NO ₆ 368.1 48.94 1.92 48.92 1.90 48.92 1.90 C ₁₃ H ₇ Cl ₃ O ₄ 357.6 50.38 1.97 C ₁₃ H ₇ Cl ₂ NO ₆ 368.1 48.94 1.92 48.78 1.90 50.30 1.90 C ₁₃ H ₇ Cl ₂ NO ₆ 368.1 48.94 1.92 48.78 1.90 1.82 1.90 C ₁₆ H ₇ F ₃ Cl ₂ O ₄ 391.1 49.13 1.80 49.10 1.82 1.90 1.82 C ₁₃ H ₈ Cl ₂ O ₃ 283.1 55.15 2.84 55.10 2.72 49.07 2.08 C ₁₄ H ₁₀ Cl ₂ O ₄ 315.6 49.17 2.22 49.07 2.08 56.49 3.29 C ₁₄ H ₁₀ Cl ₂ O ₄ 313.1 53.70 3.22 53.80 3.20	w _i (calc.)/% w _i (found)/% Formula M_r w _i (calc.)/% w _i (found)/% C H Cl C ₁₅ H ₈ Cl ₂ O ₄ 323.1 55.75 2.49 2.94 55.65 2.39 21.78 21.78 C ₁₅ H ₇ Cl ₂ NO ₆ 368.1 48.94 1.92 19.26 48.92 1.90 19.20 2.74 50.30 1.90 29.72 C ₁₅ H ₇ Cl ₂ NO ₆ 368.1 48.94 1.92 19.26 48.78 1.90 19.08 C ₁₅ H ₇ Cl ₂ NO ₆ 368.1 48.94 1.92 19.26 48.78 1.90 19.08 C ₁₅ H ₇ Cl ₂ O ₄ 391.1 49.13 1.80 18.12 49.10 1.82 18.04 C ₁₃ H ₈ Cl ₂ O ₃ 283.1 55.15 2.84 25.04 55.10 2.72 25.20 C ₁₃ H ₇ Cl ₃ O ₄ 315.6 49.17 2.22 33.49 49.07 2.08 33.39 C ₁₄ H ₁₀ Cl ₂ O ₄ 313.1 53.70 3.22	$ Formula \qquad M_r \qquad \qquad$	$ Formula \qquad \qquad$		

Table 1

Table 2

				20				
Compound	H-3	H-4	J _{3,4}	H.	H₅	H,	H_{arom}	Others
I	7.64	7.40	3.6	_	_	7.33	7.75-8.37	
П	7.63	7.04	3.6	<u> </u>	—	7.33	7.75-8.12	
Ш	7.63	7.34	3.6	_	_	7.36	7.40-8.10	
IV	7.66	7.44	3.6			7.38	7.80-8.60	
- v	7.64	7.37	3.8		_	7.37	7.75-8.37	
VI				7.92	6.63	7.24	7.37-8.87	
VII	_		_	7.92	6.75	7.27	7.37-7.78	
VIII		()		7.87	6.57	7.23	7.26-7.62	2.37 (CH ₃)
IX	_			7.90	6.66	7.26	6.93-7.50	3.85 (OCH ₃)
X	—	-		7.90	6.67	7.24	7.62-8.15	
XI	7.64	7.30	3.8	7.90	6.65	7.23		
XII	7.64	7.35	4.0	7.80	6.72	7.26		

¹H NMR spectral data (δ /ppm) of the synthesized compounds

 $J_{A,B} = 16 \text{ Hz}$

Table 3

Compound	Tilletia caries	Fusarium avenaceum	Botrytis cinerea	Alternaria alternata	Phytophthora infestans
I	0	4	3	3	4
II	1	0	3	0	0
III	0	0	3	0	0
IV	3	3	3	0	3
V	0	0	3	3	0
VI	3	0	0	0	3
VII	0	3	0	3	3
VIII	0	3	0	3	3
IX	3	3	0	3	3
X	3	0	0	0	3
XI	3	3	3	4	4
XII	3	3	0	3	3
Vitavax	4	_	_	_	_
captan		4	4	4	_
Dithane M-45				_	4

Fungicidal activity of the synthesized compounds

5-ACYLOXY-3,4-DICHLORO-5H-FURAN-2-ONES

Fungicidal activity of the prepared compounds was examined by the method in vitro on spores of fungus: Tilletia caries, Botrytis cinerea, Alternaria alternata, and Phytophthora infestans according to previously published methods [9]. The evaluation of the activity was carried out according to the scale (a/%, 0-0, 1-25, 2-50, 3-75, and 4-100) using standards: Vitavax (2,3-dihydro-5-carboxanilide-6-methyl-1,4-oxathiin), captan (cis-N-[(trichloromethyl)thio]-4-cyclohexene-1,2-dicarboximide), and Dithane M-45 (a mixture of manganese(II) and zinc(II) 1,2-ethanediyl-bis(carbamodithioates)).

3,4-Dichloro-5-(5-aryl-2-furoyloxy)-5H-furan-2-ones (I-V)

3,4-Dichloro-5-hydroxy-5*H*-furan-2-one (0.01 mol) and chloride of 5-aryl-2-furancarboxylic acid [10-12] (0.01 mol) in benzene (15 cm³) were refluxed until the evolution of HCl was ceased. Reaction mixture was cooled and the residue was filtered off and crystallized from benzene or diluted ethanol.

3,4-Dichloro-5-(3-arylpropenoyloxy)-5H-furan-2-ones (VI-XII)

3,4-Dichloro-5-hydroxy-5*H*-furan-2-one (0.01 mol) and mixed anhydride of trifluoroacetic and 3-arylpropenoic acids in toluene (10 cm^3) were mixed for 2 h at room temperature. The solvent was distilled off *in vacuo* and the residue was crystallized from benzene or methanol.

References

- 1. Beška, E., Rapoš, P., and Fandlová, M., Czechoslov. 166140 (1976); Chem. Abstr. 87, 17295u (1977).
- 2. Mowry, D. T., J. Amer. Chem. Soc. 72, 2535 (1950).
- 3. Gilbert, E. E. and Rumanowski, E. J., U.S. 2786798 (1957); Chem. Abstr. 51, 9996i (1957).
- 4. Beška, E. and Rapoš, P., Czechoslov. 149048 (1973); Chem. Abstr. 80, 36982u (1974).
- 5. Beška, E., Rapoš, P., and Fandlová, M., Czechoslov. 148592 (1973); Chem. Abstr. 80, 14835g (1974).
- Beška, E., Rapoš, P., and Demečko, J., Czechoslov. 170448 (1977); Chem. Abstr. 88, 169946r (1978).
- 7. Rapoš, P., Winternitz, P., Sohler, E., and Beška, E., Czechoslov. 138602 (1970); Chem. Abstr. 76, 14320k (1972).
- Rapoš, P., Winternitz, P., Beška, E., and Sohler, E., Czechoslov. 138821 (1970); Chem. Abstr. 76, 34093s (1972).
- 9. Konečný, V., Kováč, Š., and Varkonda, Š., Chem. Zvesti 38, 239 (1984).
- 10. Krutošíková, A., Kováč, J., Rentka, J., and Čakrt, M., Collect. Czechoslov. Chem. Commun. 39, 767 (1974).
- 11. Krutošíková, A., Kováč, J., and Sýkora, V., Collect. Czechoslov. Chem. Commun. 39, 1892 (1974).
- 12. Krutošíková, A. and Kováč, J., Collect. Czechoslov. Chem. Commun. 41, 2577 (1976).

Translated by A. Krutošíková