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A generally acceptable mathematical model for a sorption process (Second 
Fick's law) is studied in this paper. Various solutions of this diffusion equation 
are compared. A close connection of the one-point collocation method with 
a linear-driving-force approximation is shown. An attempt has been made to 
extend the applicability of the one-point collocation method for solving the 
mathematical model in the first steps of the sorption process. 

В работе изучается общепринятая математическая модель для описания 

процесса сорбции (второй закон Фика). Сравниваются различные реше­

ния этого диффузионного уравнения. Показана близкая взаимосвязь ме­

тода одноточечной коллокации с приближением линейной движущей 

силы. Сделана попытка расширить приложимость метода одноточечной 

коллокации для решения математической модели на первых стадиях 

процесса сорбции. 

In the previous papers we presented an analysis of the mathematical models of 
a one-component sorption in a single adsorbent particle under the isothermal 
behaviour assumption [1] and under the nonisothermal behaviour assumption [2]. 
The transients of average values of dimensionless adsorbate concentration and 
temperature rise in the particle were solved by the orthogonal collocation method 
in connection with the integration technique for solving the resulting system of 
ordinary differential equations. It was mentioned that for the first rapid steps of the 
adsorption process a greater number of collocation points is needed, but further 
a smaller number is sufficient for the same accuracy. A one-point collocation 
method is reported in this paper. A close connection of the one-point collocation 
with a linear-driving-force (LDF) approximation is shown. It is also explained why 

* Presented at the Statewide Seminar "Adsorption Processes in Environmental Protection", Kočov-
ce, May 24—26, 1983. 
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suitable caution must be exercised in the LDF approximation use in the internal 
diffusion dominant cases. In the last part of the paper an attempt has been made to 
extend the applicability of the one-point collocation method for solving the 
mathematical model in the first rapid steps of the sorption process. 

Mathematical model 

In the previous paper we presented a rather general mathematical model of 
a one-component sorption in a single adsorbent particle, in which a particle is 
regarded as a solid, interspersed with very small pores [3]. Internal diffusion can 
then occur either by pore, or by surface diffusion or by both simultaneously. In the 
present investigation the isothermal homogeneous surface diffusion model will be 
studied. According to this model the adsorption process occurs at the outer surface 
of a pellet followed by the diffusion of the adsorbate in the adsorbed state. The 
mass transport in the spherical particle is described by the following unsteady-state 
equation (Second Fick's law) 

dt u\dr2^rdr) ( i ; 

To simplify matters, the diffusivity is assumed to be constant. When the concentra­
tion of the adsorptive in the fluid outside a particle is constant and the effect of the 
external boundary film is negligible, eqn (J) is subject to the following initial and 
boundary conditions 

(2) 

where at is the concentration in equilibrium with the fluid outside the pellet. By 
introducing dimensionless time parameter r, dimensionless radial coordinate x, 
dimensionless concentration q as 

Dt r а , - 4 
r=ř X = Ř q=rt ( 3 ) 

respectively, eqn (Í) may be expressed in the following dimensionless form 

95 = | !я + 2Эа ( J a ) 

Эг дх X Эх 

with the initial and boundary conditions 
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ONE-COMPONENT SORPTION. IV 

q = 0 at 0 = ^ J C ^ 1 for т = 0 

| 3 = 0 at x = 0 for т > 0 (2a) 
ÖX 

q — \ at x — 1 for г > 0 

Analytical solution of eqn (la) and (2a) is well known [4]. Time dependence of 
mean internal concentration q (see eqn (17)) is 

Я = 1 -~2 S Ti exp ( - /с2я2т) (4) 

and the corresponding solution for small-time values is [4] 

Зт (5) -Ч;--
For large values of т the first term of series (4) dominates the solution 

q = \ 2 e x P ( ~ я 2 т ) (^) 
я 

After some mathematical manipulations we can get from eqns (5) and (6) the rate 
equations 

f=v=-3 (5a) 

dr Улт 

g = j ŕ(l-9) (6a) 
Eqn (6a) states that for sufficiently large т, the rate of diffusion in the particle 
becomes proportional to the difference between the amount that can be sorbed and 
that which has been sorbed. In this expression the rate of mass transfer is 
approximated as a linear function of the driving force (linear-driving-force (LDF) 
approximation). Glueckauf [5] and Jury [6] have shown that LDF approximation 
in the form 

dq лс/л _ч Glueckauf's LDF / г г ч 

d т approximation 

provides a good approximation for many boundary conditions and for the linear 
isotherm. The corresponding expressions for the systems with equilibrium gover­
ned by a Langmuir isotherm [7] or by a Freundlich isotherm or for the systems in 
which the diffusivity is strongly concentration dependent [9] are in the form 
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fT -4 .15(1-4) (8) 

where t]i is the correction factor to improve the LDF approximation and it can be 
found in the cited papers. Factor rji is obtained by comparing the time slope of the 
curve of particle uptake vs. time, as in a packed bed [10] with the slope given by 
eqn (8) at q = 0.5. 

It was shown by Vermeulen [11] that eqn (4) is well approximated by the 
empirical expression 

<7 = [1-ехр(-л 2 т)] 0 5 

which is equivalent to the following rate equation 

Vermeulen's QDF 
approximation 

or in its general form 

dq_K2l-q2 

dr 1q 

, — JJ2L J - -

dr 2q 

(9) 

(10) 

(U) 

where correction factors r\2 for various systems can be found in [7]. Eqns (JO) and 
(J J) are the mathematical forms of the quadratic-driving-force (QDF) approxima­
tion. 

Fig. 1 shows the comparison between log áq/áx computed from eqns (4), (5a), 
(6a), (7), and (JO) which have been plotted against log т as abscissa. The results 

Fig. 1. Comparison of various solutions of "Second Fick's law'*. 
Exact solution, eqn (4); . 

A Limiting solution for small т values, eqn (5a); О limiting solution for large т values, eqn (6); 
x Glueckauf's LDF approximation, eqn (7); • Vermeulen's QDF approximation, eqn (10). 
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indicate that Vermeulen's empirical QDF approximation gives excellent descrip­
tion of the diffusion process. Glueckauf's LDF approximation differs noticeably at 
the start of an investigated problem. Approximation (5a) is excellent for small r, 
but quite fails for r>0.2. On the other hand, approximation (6a) is suitable only 
for the larger values of т. 

The use of LDF approximation, eqns (6a), (7) or (8), is a familiar concept to 
represent the transport of mass and/or energy. It is another means of lumping 
parameters. Transport in a spatial direction down a gradient is replaced by the 
coefficient multiplied by the driving force. The point-to-point variation is neglec­
ted. When used in dynamic models the LDF approximation permits the process 
with spatial gradient, eqn (1 a), to be described by an ordinary differential equation 
(eqns (6a) or (7)) with time as the only independent variable. However, in some 
cases we have assumed that empirical quantities such as the mass transfer 
coefficient can be used to represent transport processes even during periodes of 
dynamic operation. LDF approximation is such an ingrained engineering concept 
that it is used quite naturally in dynamic models. However, it is strictly a steady 
state concept. In general it is not applicable in the unsteady state. Fortunately, in 
many dynamic applications it is a good approximation. From Fig. 1 it is apparent 
that the assumption that a distributed parameter system, eqn (la), can be 
approximated by a lumped parameter model, eqns (6a) or (7), will be valid only if 
there is a much larger capacitance elsewhere in the system, so that the time needed 
for the mass transfer coefficient to decay to its steady state value is negligible in 
comparison with the response time of the remainder of the adsorption system. In 
other words, it means that the internal diffusion is not limiting the response time of 
the adsorption process. 

Standard one-point collocation 

Orthogonal collocation is another means of "lumping parameters" The 
one-point collocation method (orthogonal collocation method with single internal 
collocation point) has been mentioned in numerous papers in recent years [12]. 
The main objective of this part is to show that one-point collocation is a means of 
obtaining typical LDF relations such as those in eqn (7). The derivation of the 
solution follows most conveniently if (la) and (2) are rewritten in terms of и = x2 

for O ^ J C ^ I 

dq dq r-
— = —-2yfu for u^O 
ox du 

(12) 

3JC 2 Z 3 U M 3 M 2 
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Eqn (la) is reformulated to 

4 И Щ + б | М * (13) 
du du Эт 

The boundary condition dq/dx = 0 at x = 0 is automatically satisfied in eqn (12). 
The boundary and initial conditions (2a) are consequently given as 

4 = 0 at O ^ u ^ l for т = 0 

q — \ at и = 1 for T > 0 

The one-point collocation version of eqn (13) is [1] 

dqi_ 

(14) 

d T Bnqi + B1242 = B 1 2 ( l - <ři) ( Í 5 ) 

where 

B i 2 = - B 1 1 = T - ^ — (16) 
1 - Ml 

and qx is the value of q at щ = x\. Inserting U\ = 0.6 leads precisely to the choice of 
B n = 15. The average concentration is found by the Gauss—Legendre quadrature 

1 3 1 -
q=3 f qx2dx = - j q Vwdw = q(u = иг) = qx (17) 

о £ 0 

Then from eqns (15) and (17) we get 

g-15(l-*) (7) 

which is the known Glueckaufs LDF approximation. 

Improved one-point collocation 

Fig. 2 shows the typical concentration profiles at some selected values of т in 
a sphere [4]. From the figure it is evident that the position of the collocation point is 
quite disadvantageous in the first steps of the sorption process, when concentration 
at the collocation point is zero or nearly zero. 

Now let us show how a one-point collocation can be used to obtain a solution 
that is accurate for small т values. The main purpose of this paper is to make an 
extension of the applicability of the one-point collocation method in eqn (la) to 
small values of т following the Paterson and Cresswelľs concept of a "burnt-out" 
and a "reaction" zone of the catalyst pellet problem with large Thiele modulus 
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Fíg. 2. Concentration distribution at various times in a sphere and position of a single standard 
collocation point x\. Numbers on curves are values of dimensionless time т. 

values [13]. This concept is a model approximation in which the dependent variable 
has been equated to zero in part of the range of independent variable x to treat 
steep profiles in catalyst pellets. We shall now formalize this procedure and point 
out to its application to our sorption (diffusion) problem. We shall introduce the 
following model simplification 

given by (la) for x^xs 

da 
7T1 = 0 for JC^Xs 
ox 

A new variable 

v = 1 - J t s 

is introduced in the mass balance (la) 

1 d2q , 1 _2 Э<?_Эд 
(l-xs)

2dv2 (l-xs)xs + v(l-xs)dv Эт 

The boundary conditions are 

q = 1 at v = 1 for T > 0 

dq 
dv 

= 0 at usSO for т > 0 

(18) 

(19) 

(20) 
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If eqns (19) and (20) are again rewritten in terms of u = v2, we get 

дд = 4u д2д Г 2 | 4 \Ги Лдд 

Эг ( l - j c s ) 2 9 u 2 L(l-jcs)2 (1-JCS)[JCS + V ^ ( 1 - J C S ) ] J 9 M 

The one-point collocation version of eqn (21) is 

M — ? — + Щ= 1^-(1-*) (22) 

or 

^ = К ( д с ) - ( 1 - 9 . ) (23) 

Inserting «i = 0.6 leads to 

ВД=Г^_ + 4 V M 1 
L(l-xs)

2 (l-x;)[*. + VÖ6(l-*.)]J 

where K(xs) is the xs-dependent mass transfer coefficient. Obviously, for x, = 0 we 
get K(xs)= 15. It is simple to show that from eqn ( i a ) 

Эт W*=. 
or 

35 = ^ _ / Э Я \ = _ 6 _ ( ^ (25) 
Эт 1-JCS \ 9 I ; / W = I 1-JC S \9M/U=I 

and the collocation version is 

5r = 7-^-(A21<7i + A22 \) = -*—-±—(\-qi) (26) 
dr 1 — JCS 1-jr. 1-Mi 

The solution of eqn (23) is 

<jfi = l - e x p [ - X ( ^ . ) . T ] (27) 

and after substituting of 0.6 for U\ in (26) we get 
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From eqns (28) and (5) it is possible to find the exact values of xs and K(JCS) for 
any г, or in other words, the exact value of mass transfer coefficient K(xs). The 
results are presented in Table 1. 

Table 1 

Values of q\ and K(x*) for small т values 

X, 

0.999 

0.990 

0.900 

0.800 

0.700 

T 

3.231 x 10"
7 

3.192 x 10~
5 

2.857 x 10"
3 

1.027 x 10"
2 

2.106 x 10"
2 

K(xs) 

5 007 748 
50 776 

579 

166 

83 

<7i 

0.8017 

0.8023 

0.8089 

0.8173 

0.8267 

From the tabulated results the following conclusion is apparent: The value of q\ 
is almost constant in the first steps of the sorption process. It is convenient to use 
this fact for the numerical solution of eqn (22). The results presented here can 
easily be organized into an algorithm for solving eqn (22) in the first steps of the 
sorption process. Spline point JCSI is chosen. The length of a suitable interval 
(1 - JCsi) can be arbitrarily chosen as, for example (1 — JCS) = 0.001 at the start of the 
computation. Next we integrate eqn (22) and check the condition qx > 0.8. If it is so 
the length of new interval (1-JCS2) is estimated as 1 0 ( 1 —xsi) and the next 
integration can run in the same way. Computational results are shown in Fig. 3. 

Fig. 3. Improved one-point collocation method. 
Starting spline point x,i = 0.999. 

— Exact solution, eqn (4). 
x Improved one-point collocation, eqn (28). 
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Conclusion 

The results presented in this paper can be divided into three parts : 
1. Glueckaufs L D F approximation gives unsatisfactory description of the 

sorption (diffusion) process for small-time values. Vermeulen's empirical Q D F 
approximation, on the other hand, is excellent for the whole range of т. 

2. Glueckaufs L D F approximation can be derived when the one-point colloca­
tion method with щ = 0.6 as the position of the collocation point, combined with 
the Gauss—Legendre quadrature, is applied in the diffusion equation (Second 
Fick's law). 

3. A simple algorithm is suggested to solve the diffusion equation, based on the 
Cresswell and Paterson's concept. Dividing the particle into two parts — "sorp­
t ion" and "nonact ive" zones — and applying the one-point collocation procedure 
in the sorption zone we can obtain fairly accurate results for small-time values as 
well. 

Symbols 

a adsorbate concentration in particle mol m - 3 

a* equilibrium adsorbate concentration mol m - 3 

Bii, Bi2 differentiation weights 1 
D diffusivity m 2 s _ 1 

K(xs) xs — dependent mass transfer coefficient 1 
q dimensionless adsorbate concentration 1 
qu q2 dimensionless concentrations at the collocation points 1 
q average dimensionless adsorbate concentration 1 
R radius particle m 
t time s 
и dimensionless radial coordinate u = x2 1 
u\ position of the collocation point 1 
v dimensionless variable 1 
x dimensionless radial coordinate 1 
JCI position of the collocation point 1 
jc 8 position of the spline point 1 
rji correction factor defined by eqn (8) 1 
rj2 correction factor defined by eqn (11) 1 
T dimensionless time 1 
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