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In the solution of the set of equations describing the liquidus and solidus
curves, the presumption of the nonideality was introduced in the most simple
way, analogously as for the regular solutions. Various interaction parameters
both for the liquid and solid phases have been considered. The influence of
these parameters as well as of the values of the enthalpy of fusion of pure
components on the resulting shape of the phase diagram has been systematical-
ly investigated. At low values of the interaction parameters, a minimum or
a maximum appears on the liquidus and solidus curves first. With increasing
values of the interaction parameters, the phase diagrams achieve gradually the
shape typical for limited solubility including metastable area and, in the limit
for the interaction parameter in the solid phase approaching infinity, the shape
corresponding to the immiscibility in the solid phase. The slopes of tangents to
the liquidus and solidus curves in the limiting points have been determined
analytically.

B peleHue cucteMbl ypaBHEHUH, ONMUCHIBAIOLUUX TUHUM JTMKBUIYCA U CONHU-
ayca, BBEIEHO MpPEANoJoXeHHe HeuealbHOCTH, PHYEM CeJaHO 3TO Haubo-
Jlee MpOCThIM CNOCO6G0OM, aHANOIHYHO CNy4yalo peryaspHbix pactBopos. [Ipu-
HATBI BO BHUMaHHE pa3fiMyHble MapaMeTpbl B3aMMOJEeHCTBUN KaK B XHUIKOM,
Tak u B TBepao# c¢azax. [TogpoOHO M3yueHO BIUSHHE 3THX MapaMeTpOB,
a TaK>Xe BEJIMYUH IHTAJNBMNUH CIUSHUS YUCTBIX KOMIIOHEHTOB Ha OKOHYATEb-
HbI BUA ¢pa3oBoi auarpammbl. [IpM HM3KMX 3HaYeHHUSIX UHTEPaKLUOHHBIX
napaMeTpoB Ha JIMHUSAX JIMKBHAYCA M CONMAYCA CHayana nosBAsieTcd MUHUMYM
nin mMakcumyM. C yBeanyeHMeM 3HAYEeHHH MHTEPAKUHOHHBIX NapaMeTpoOB
¢a3oBble AMarpamMMbl NpUOOPETAIOT BUA, TUMUYHBIA A Clyyas OrpaHHUYEH-
HOW pacTBOPUMOCTH, BKJIOYas o6nacTb MeTacTaGUIILHOCTH, U B Npefelie, Npu
MHTEPaKUHOHHBIX NapaMeTpax B TBEpAOH a3e cTpeMsILUXCS K 6eCKOHeYHOC-
TH, MPpUOOpETAET BUML, COOTBETCTBYIOLLMI HECMEILIMBAEMOCTH B TBepoH (a3se.
Yribl HaKJIOHA KacaTebHbIX K JIMHUSAM COJNIMAYCa U JIMKBUAYCA B MPefesbHbIX
TOYKax ObLIM onpeaesieHbl aHATUTUYECKH.
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The phase diagrams of systems with solid solutions are conventionally divided
into two groups:

1. with an unlimited solubility in the solid phase,

2. with a limited solubility in the solid phase.
Characteristic shapes of both groups of phase diagrams are shown in Figs. 1a and
1b. A subgroup of the second group includes systems with a great difference
between the melting temperatures of the pure components (Fig. 1c). In most
textbooks [1, 2], the phase diagrams of the 2nd group are presented in the form
shown in Figs. 1b and 1c. Malinovsky [3] investigates these phase diagrams by

Fig. 1. a) Phase diagram with an unlimited miscibility of components. b) Phase diagram with a limited

solubility of components. ¢) Phase diagram with a limited solubility of components and a great

difference between the melting temperatures of components. d) Interpretation of a phase diagram with
a limited miscibility of components according to Reisman [5].
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treating each part independently. Seward [4] also deals with the metastable phase
diagrams, however, without giving a continuous solution over the entire concentra-
tion range.

Reisman [5] assumes the phase diagram with a limited solubility in the solid
phase as formed by superposition of two phase diagrams with unlimited solubility
(Fig. 1d). Though formally partly convenient, this approach is entirely erroneous
because of the following reasons:

a) It is based on the premise of hypothetical phase transitions in the solid phase.
There exist, however, components which do not exhibit any phase transition
between 0 K and the melting temperature still forming solid solutions;

b) A phase diagram with a limited solubility which demonstrates the nonideality
of the system is interpreted through the mediation of two “ideal’’ phase diagrams;

c) The neglect of the nonideality makes it impossible to determine the curve of
solubility of components in the solid phase which is an integral part of the phase
diagram.

Theoretical

The equilibrium between a liquid and a solid phase in a system with the
formation of solid solutions is described by the general form of the
LeChatelier—Shreder equation [6], for AC, =0

In (a._.-/as_i) = (AH(,/R )(I/Tf_i = l/T) (1 )

where a,; and a., are the activities of the i-th component in the liquid and solid
phases, respectively, and T;; and AH;; are temperature and the heat of fusion,

respectively.
For a binary system, two such equations are to be considered, one for each

component. If we denote
AH:;/R=H,, AH;;/R=H,, Tyy=F,, T(.=F,
we obtain a system of two equations
Ina,—Ina,,=H,/F.—H,/T (2a)
Ina,—Ina,,=H,/F,—H,/T (2b)

When expressing the activities of components in the liquid and solid phases, we
presume the validity of the relation a; = x;-y; (the so-called classical model).

The expression of the activity coefficients is based on the most simple relation for
the Gibbs excess energy

AGE=LX1X2=LX(1—X) (3)
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For the so-called interaction parameter L a relation to the difference of energies
between the particles can be derived according to a simple lattice model [7]:
L ~(2e12— €11 — ez;). If we assume simultaneously the validity of relation

AGE=RT[(1-x)In y,+ x In y,] (4)

we can express the activity coefficients of the individual components (v is
a dimensionless quantity AG®/RT)

In yi=1vy —x(3y/3dx) = (L/RT)x} (5a)
Iny,=v +(1-x)(@y/3x)=(L/RT) x} (5b)

Consequently, we have generally used the relation
Iny=A/T)(1 - x;)? (5¢)

where A =L/R.

When expressing activities, the mole fractions in the liquid and solid phase in
relations (2a, 2b) were denoted as x and y, and the interaction parameters as A
and B, respectively

Inag;=In(1-x)+(A/T)x? (6a)
Ina,,=In(1-y)+(B/T)y? (6b)
Ina,=Inx+(A/T)1 - x)’ (6¢)
Ina,,=Iny+(B/T)(1-y) (6d)

By introducing relations (6a—6d) into eqns (2a, 2b) we obtain the final set of
equations which was solved

In(1-x)+(A/T)x*-In(1-y)—(B/T)y>*=H,/F,—H,/T (7a)
Inx+(A/T)Y(1-x)>—Iny—(B/T)(1-y)’=H,/F,— H,/T (7b)
If the system is ideal in both phases, i.e. if A = B =0 K, based on eqns (7a, 7b) x as
well as y can be expressed explicitly as a function of temperature. In the opposite

case, both equations are transcendent with respect to x and y. From both
equations, however, temperature can be expressed (on presumption that AC, =0)

T=(H,+ Ax*— By?)/(H;/Fi—In (1-x)+In (1-y)) (8a)
T=(H,+A(1-x)*-B(1-y))/(H:/F,—Inx+1n y) (8b)

By subtracting both equations we eliminate temperature and obtain an implicit
relation of variables x and y: f(x, y)=0. For the proper modelling of phase
diagrams it is more advantageous to choose a constant y, i.e. the mole fraction of
the second component in the solid phase and to supplement the corresponding x.
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The fastest numerical method was found to be the Newton’s iteration method [8]:
x(2)=x(1) - f/(df/dx), where x(i) is the i-th estimate of the variable x. It is
merely x which must be prevented to deviate from the interval (0, 1). If this
happens, it must be brought back, e.g. by means of random numbers.

Solubility in the solid phase

Beside the liquidus and solidus curves, the curve of the solubility or mutual
miscibility of components in the solid phase also appears to be an integral part of
the phase diagrams with formation of solid solutions. This curve is determined by
the condition of equality of the activities of components in both the solid phases

Asy1=0As1 O Qgy2= 4y,

Inevitable condition of the solvability of these equations appears to be the
temperature dependence of the activity coefficients as, e.g., in relations (6b, 6d).
Then it must hold

In(1-y)+(B/T)y*=Iny+(B/T)(1-y)* 9)
Hence for T it holds
T=BQRy-1)/In[y/(1-y)] (10)

For y=0.5 this relation gives an indeterminate expression of the type 0/0.
Applying the L’Hospital’s rule [8], however, for y =0.5 we obtain T = B/2. The
curve T=fce(y) corresponding to the selected shape of the temperature and
concentration dependence of the activity coefficients exhibits a maximum at B/2
and it is symmetrical on both sides.

Limiting relations
The relations for the slopes of tangents to the liquidus and solidus curves in the
proximity of pure components can be derived utilizing the well-known relations
dT/dx=9T/3x+3T/3y-dy/dx (11a)
dT/dy=03T/3y+3T/3x-dx/dy (11b)

By calculation of the above derivatives and limitation of both x and y to zero, we
obtain the final expressions

lim dT/dx = (Fi/H,)(1+ (A — B)/H;)(q — 1) (12a)
x,y—0
limo dT/dy = (F¥/H;)(1+(A —B)/H,)(qg —1)/q (12b)
x,y—
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where g =exp [(H:+ A — B)/F,— H,/F,].

The limiting expressions for x,y— 1 can be obtained from relations (12a, 12b)
by an exchange of indices 1 and 2. It should be mentioned that the difference
between the interaction parameters A and B only plays a role in these equations.
The relations for A = B are identical with those derived by Malinovsky [6].

Results and discussion

For an ideal system with A = B =0 K, the solution of the set of eqns (7a, 7b)
affords the familiar lens-like shape of the liquidus (upper) and solidus (lower)
curves constituting the phase diagram of a system with continuous solid solutions. If
we select fixed values of the melting temperatures of components of the model

T

0 Xy 1

Fig. 2. The influence of AH; of pure components (A =B =0K). H:(Hz)=10000K (10 000 K)
.50 000 K (50 000 K) — — —, 10 000 K (50 000 K) —-—-, 50 000 K (10 000 K)
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system (e.g. Tty =1200 K, T,,=1100 K), then the values of AH of fusion of both
components are the sole parameters which can change the shape of the diagram.
The influence of AH; of the components on the shape of the phase diagram is
shown in Fig. 2.

In the successive modelling also fixed values of AH; of pure components have
been selected (AH;/R =AH,/R =10 000 K). On assumption that the system
behaves either in the solid or in the liquid phase as an ideal one, i.e. one of the
parameters A, B equals zero, we obtain four basic model situations shown in
Fig. 3. From their comparison it follows that there is only little difference between
the phase diagrams of systems with an equal A — B difference. As it will be stressed
later, in the comparison of the model and real phase diagrams also the solubility

0 Xy 1

Fig. 3. The influence of parameters A, B (H; = H, =10 000 K).
A(B)=—1000 K (0 K) ,0K (1000 K) — — —, 1000 K (0 K) — —-, 0 K (— 1000 K)
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curve in the solid phase, which is determined solely by the parameter B, is to be
considered.

The influence of signs in the case of the equality of absolute values of the
parameters A, B is shown in Fig. 4. Beside expansion and contraction also a rise of
a maximum or a minimum can be observed in the phase diagram, similarly to the
phase diagrams of the real systems.

When selecting the diagram with a minimum on the solidus and liquidus curves
as the most interesting variant in Fig. 4, we can model the rise of a minimum by
gradually increasing the absolute value of the parameter (Fig. 5). An inter-step in
this trend was found to be the case when both curves have a common tangent in the

0 Xy 1

Fig. 4. The influence of parameters A, B (H, = H, =10 000 K).
A(B)=-1000K (—-1000 K) ,1000K (1000 K) — — —,
—1000 K (1000 K) —-—-, 1000 K ( — 1000 K)
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. .
.....

0 X,y 1

Fig. 5. The rise of a minimum on the liquidus and solidus curves (H; = H, = 10 000 K).
A(B)=0K (0K) , =200 K (200K) — — —,
—500K (500 K) —-—-, — 1000 K (1000 K)

]

point x = 1. In all the modelled cases, the solubility curve occurs in the range of low
temperatures ( Tmax= B/2) and does not reach into the area of liquidus and solidus
curves. When increasing the value of the parameter B, the solubility curve will
approach the solidus curve till the intersection (Fig. 6). Then also the liquidus curve
is intersected. A typical illustration of such a phase diagram is shown in Fig. 7. It is
evident that the liquidus and solidus curves have a common tangent in one point.
The connecting line of the intersections of the solubility ‘curve in the solid phase
with the solidus curve also passes through intersections on the liquidus curve, which
otherwise can be proved by means of eqns (7a, 7b) and (9). This connecting line
delimits the equilibrium part of the phase diagram. The course of the liquidus and
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0 X,y 1

Fig. 6. Formation of the phase diagram with a limited solubility of components.
A(B)= —1800 K (1800 K) , —2000 K (2000K) — — —,
—2200 K (2200 K) —-—-, —2400 K (2400 K)

solidus curves below this temperature is to be considered as a metastable one and
their interpretation can be inspired by an analogy in the physical chemistry: the
continuous course of the van der Waals’ isotherm for the liquid—vapour equilib-
rium.

It is evident that the phase diagram of systems with a limited solubility has been
obtained by solving the same set of equations as for the systems with an unlimited
solubility, the difference being merely quantitative following the degree of the
nonideality of the system. This approach is clearly more justified than the one
assumed by Reisman. The obtained solution is continuous within the entire
concentration range and it makes the mapping of the metastable area possible
which is open to study if admitting the possible undercooling.
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Fig. 7. Typical phase diagram with a limited solubility of components.
H;(H>)=10000 K (10 000 K), A (B)= —4000 K (4000 K).

Liquidus curve

; solidus curve — — —; solubility curve in solid phase —-—- ;
connecting line

A similar shape of the phase diagram is obtained also on assumption of an ideal
behaviour in the liquid phase (A =0K, B positive). With increasing B, the
metastable part of the phase diagram moves towards lower temperatures (Fig. 8)
and the liquidus curve gradually approximates the liquidus curves of the phase
diagram with a zero solubility of components in the solid phase (simple eutectic
systems). Thus the phase diagram of a simple eutectic system may be considered to
be a limiting case of the general shape of a phase diagram with solid solutions for
B — . The value of the interaction parameter B expresses the readiness of the
system to form solid solutions. A high positive value of B indicates that the
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0 Xy 1

Fig. 8. Formation of a simple eutectic phase diagram (H; = H, = 10 000 K).
A (B)=0K(2000K)— — — 0K (3500K) - - - - - ,0K(5000K)—-—-,0 K (© K) ——,

components will segregate on transition into the solid phase because of the higher
energy of a solid solution compared to that of the individual components.

The phase diagram with a limited solubility in the solid phase, mentioned in the
introduction (Fig. 1¢), also can be modelled when choosing appropriate values A,
B, and of AH; of the pure components. The composition of such a phase diagram
by gradually decreasing the value of T, while preserving the other parameters is
shown in Fig. 9. It is only the curvature of the left-hand branch of the solidus curve
which does not correspond to the one shown in the textbooks, however, it is to be
taken into consideration that when employing only two interaction parameters, it is
difficult to compare in detail the modelled and the real phase diagrams.
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0 Xy 1

Fig. 9. Formation of a phase diagram of the type 1c.
H, (H)=5000 K (1000 K), A (B)=1000 K (1600 K).
T,=700K———, 900K — — — 1100 K —-—-.

Conclusion

Based on the generally valid relations for the phase equilibria in a system capable
to form solid solutions and on the wide-spread method for expressing the
nonideality of a system, we have been successful in:

1. Proving that even the phase diagrams with a limited solubility in the solid
phase can be composed as a continuous solution of the above equations;

2. Mapping the metastable area of the phase diagram;

3. Combining the solution of the liquidus and solidus curves with the solution of
the solubility curve in the solid phase;
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4. Proving that the phase diagram of a simple eutectic system is only a limiting

case for a great value of B;

5. Revealing the influence of the interaction parameters A and B (for the liquid

and solid phase, respectively): the dominant influence of B on the solubility curve
in the solid phase and of the difference A — B on the liquidus and solidus curves ;

6. Deriving the relations for the slopes of tangents to the liquidus and solidus

curves in the proximity of pure components.

B W N =

wn
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