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In the solution of the set of equations describing the liquidus and solidus 
curves, the presumption of the nonideality was introduced in the most simple 
way, analogously as for the regular solutions. Various interaction parameters 
both for the liquid and solid phases have been considered. The influence of 
these parameters as well as of the values of the enthalpy of fusion of pure 
components on the resulting shape of the phase diagram has been systematical­
ly investigated. At low values of the interaction parameters, a minimum or 
a maximum appears on the liquidus and solidus curves first. With increasing 
values of the interaction parameters, the phase diagrams achieve gradually the 
shape typical for limited solubility including metastable area and, in the limit 
for the interaction parameter in the solid phase approaching infinity, the shape 
corresponding to the immiscibility in the solid phase. The slopes of tangents to 
the liquidus and solidus curves in the limiting points have been determined 
analytically. 

В решение системы уравнений, описывающих линии ликвидуса и соли-
дуса, введено предположение неидеальности, причем сделано это наибо­
лее простым способом, аналогично случаю регулярных растворов. При­
няты во внимание различные параметры взаимодействий как в жидкой, 
так и в твердой фазах. Подробно изучено влияние этих параметров, 
а также величин энтальпий слияния чистых компонентов на окончатель­
ный вид фазовой диаграммы. При низких значениях интеракционных 
параметров на линиях ликвидуса и солидуса сначала появляется минимум 
или максимум. С увеличением значений интеракционных параметров 
фазовые диаграммы приобретают вид, типичный для случая ограничен­
ной растворимости, включая область метастабильности, и в пределе, при 
интеракционных параметрах в твердой фазе стремящихся к бесконечнос­
ти, приобретает вид, соответствующий несмешиваемости в твердой фазе. 
Углы наклона касательных к линиям солидуса и ликвидуса в предельных 
точках были определены аналитически. 
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The phase diagrams of systems with solid solutions are conventionally divided 
into two groups: 

1. with an unlimited solubility in the solid phase, 
2. with a limited solubility in the solid phase. 

Characteristic shapes of both groups of phase diagrams are shown in Figs, la and 
lb. A subgroup of the second group includes systems with a great difference 
between the melting temperatures of the pure components (Fig. Ic). In most 
textbooks [1, 2], the phase diagrams of the 2nd group are presented in the form 
shown in Figs. lb and lc. Malinovský [3] investigates these phase diagrams by 

*.y 1 x, у 1 

x, у 1 x, у 1 

Fig. La) Phase diagram with an unlimited miscibility of components, b) Phase diagram with a limited 
solubility of components, c) Phase diagram with a limited solubility of components and a great 
difference between the melting temperatures of components, d) Interpretation of a phase diagram with 

a limited miscibility of components according to Reisman [5]. 

16 Chem. Papers 39 (1) 15—28 (1985) 



PHASE DIAGRAMS OF NONIDEAL SYSTEMS 

treating each part independently. Seward [4] also deals with the metastable phase 
diagrams, however, without giving a continuous solution over the entire concentra­
tion range. 

Reisman [5] assumes the phase diagram with a limited solubility in the solid 
phase as formed by superposition of two phase diagrams with unlimited solubility 
(Fig. Id). Though formally partly convenient, this approach is entirely erroneous 
because of the following reasons: 

a) It is based on the premise of hypothetical phase transitions in the solid phase. 
There exist, however, components which do not exhibit any phase transition 
between О К and the melting temperature still forming solid solutions; 

b) A phase diagram with a limited solubility which demonstrates the nonideality 
of the system is interpreted through the mediation of two "ideal" phase diagrams; 

c) The neglect of the nonideality makes it impossible to determine the curve of 
solubility of components in the solid phase which is an integral part of the phase 
diagram. 

Theoretical 

The equilibrium between a liquid and a solid phase in a system with the 
formation of solid solutions is described by the general form of the 
LeChatelier—Shreder equation [6], for A C p = 0 

In (ajas,) = (AHJR)(Í/Tfti- Í/T) (1) 

where au and aSti are the activities of the /-th component in the liquid and solid 
phases, respectively, and Tff, and AHM are temperature and the heat of fusion, 
respectively. 

For a binary system, two such equations are to be considered, one for each 
component. If we denote 

AH f . i /Ä=Hi , AHít2/R = H2, TfA = Fly TU2 = F2 

we obtain a system of two equations 

In flu - In flSfl = HJF, - Нг/Т (2а) 

In flu - In fls,2 = H2/F2 - H2/T (2b) 

When expressing the activities of components in the liquid and solid phases, we 
presume the validity of the relation A, = JC, • y, (the so-called classical model). 

The expression of the activity coefficients is based on the most simple relation for 
the Gibbs excess energy 

AGE = LXlx2 = Lx(l-x) (3) 
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For the so-called interaction parameter L a relation to the difference of energies 
between the particles can be derived according to a simple lattice model [7]: 
L~(2ei2- eu - e22). If we assume simultaneously the validity of relation 

AGE=RT[(l-x) In y, + jc In y2] (4) 

we can express the activity coefficients of the individual components (\p is 
a dimensionless quantity AGE/RT) 

In у, = гр - х(ЭЦ>/дх) = (L/RT)xl (5a) 

In y2 = гр + (1 -x)(dxpldx) = (LIRT)x\ (5b) 

Consequently, we have generally used the relation 

\nyi = (XIT)(\-xi)
2 (5c) 

where A =L/R. 
When expressing activities, the mole fractions in the liquiď and solid phase in 

relations (2a, 2b) were denoted as x and y, and the interaction parameters as A 
and B, respectively 

l n a u = l n ( l - j t ) + (A/T)jc2 (6a) 

1пя5,, = 1 п ( 1 - у ) + (В/Т)у 2 (6b) 

In fl|.2 = In x + (A/T)(l - xf (6c) 

In as,2 = In у + (B/T)(l - y f (6d) 

By introducing relations (6a—6d) into eqns (2a, 2b) we obtain the final set of 
equations which was solved 

In (1 -x) + (AIT)x2-In (l-y)-(B/T)y2 = H1/Fl-Hl/T (7a) 

\nx + (A/T)(l-x)2-\ny-(B/T)(i-y)2 = H2/F2-H2/T (7b) 

If the system is ideal in both phases, i.e. if A = В = О К, based on eqns (7a, 7b) x as 
well as у can be expressed explicitly as a function of temperature. In the opposite 
case, both equations are transcendent with respect to x and y. From both 
equations, however, temperature can be expressed (on presumption that A Q = 0) 

T = (Я, + Ax2 - Ву2)/(Нг/Рг - In ( 1 - J t ) + In (1 - y)) (8a) 

T=(H2 + A(l -x)2-B(l -y)2)/(H2/F2-ln x + \n y) (8b) 

By subtracting both equations we eliminate temperature and obtain an implicit 
relation of variables x and y: f(x,y) = 0. For the proper modelling of phase 
diagrams it is more advantageous to choose a constant y, i.e. the mole fraction of 
the second component in the solid phase and to supplement the corresponding x. 
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The fastest numerical method was found to be the Newton's iteration method [8] : 
jc(2) = jc(l)-//(d//djc), where x(i) is the /-th estimate of the variable x. It is 
merely x which must be prevented to deviate from the interval (0, 1). If this 
happens, it must be brought back, e.g. by means of random numbers. 

Solubility in the solid phase 

Beside the liquidus and solidus curves, the curve of the solubility or mutual 
miscibility of components in the solid phase also appears to be an integral part of 
the phase diagrams with formation of solid solutions. This curve is determined by 
the condition of equality of the activities of components in both the solid phases 

fls.i = flsu or aS',2 = fls\ 

Inevitable condition of the solvability of these equations appears to be the 
temperature dependence of the activity coefficients as, e.g., in relations (6b, 6d). 
Then it must hold 

l n ( l - y ) + (B/T)y2 = lny + (B/T)( l-y) 2 (9) 

Hence for T it holds 

Т = В(2у-1)Пп[у/(1-у)} (10) 

For у = 0.5 this relation gives an indeterminate expression of the type 0/0. 
Applying the ĽHospitaľs rule [8], however, for у = 0.5 we obtain T = B/2. The 
curve T = fce(y) corresponding to the selected shape of the temperature and 
concentration dependence of the activity coefficients exhibits a maximum at В/2 
and it is symmetrical on both sides. 

Limiting relations 

The relations for the slopes of tangents to the liquidus and solidus curves in the 
proximity of pure components can be derived utilizing the well-known relations 

dT/dx = dT/dx + dT/dydy/dx (11a) 

dT/dy = dT/dy + 3T/dx'dx/dy (lib) 

By calculation of the above derivatives and limitation of both x and у to zero, we 
obtain the final expressions 

lim dT/dx = (F2/H0(1 + (A - B)IH,)(q - 1) (12a) 

ton dT/dy = (Fi/HrXl + (A -BVH^q - \)lq (12b) 
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where q = exp [(H2 + А - ß)/F, - H2/F2]. 
The limiting expressions for jt,y—>1 can be obtained from relations (12a, 12b) 

by an exchange of indices 1 and 2. It should be mentioned that the difference 
between the interaction parameters A and В only plays a role in these equations. 
The relations for A =B are identical with those derived by Malinovský [6]. 

Results and discussion 

For an ideal system with A = В = О К, the solution of the set of eqns (7a, 7b) 
affords the familiar lens-like shape of the liquidus (upper) and solidus (lower) 
curves constituting the phase diagram of a system with continuous solid solutions. If 
we select fixed values of the melting temperatures of components of the model 

Fig. 2. The influence of AH, of pure components ( A = B = 0K). H,(H2)= 10 000 К (10 000 К) 
, 50 000 К (50 000 К) , 10 000 К (50 000 К ) — — , 5 0 000 К (10 000 К) 
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system (e.g. T u = 1200 K, Tf,2 = 1100 K), then the values of AH of fusion of both 
components are the sole parameters which can change the shape of the diagram. 
The influence of AH{ of the components on the shape of the phase diagram is 
shown in Fig. 2. 

In the successive modelling also fixed values of AH{ of pure components have 
been selected (АНМ/Я = AHf,2/R = 10 000 K). On assumption that the system 
behaves either in the solid or in the liquid phase as an ideal one, i.e. one of the 
parameters А, В equals zero, we obtain four basic model situations shown in 
Fig. 3. From their comparison it follows that there is only little difference between 
the phase diagrams of systems with an equal A - В difference. As it will be stressed 
later, in the comparison of the model and real phase diagrams also the solubility 

Fig. 3. The influence of parameters А, В (Hi = H2 = 10 000 K). 
A(B)= - 1000 К (0 К) , 0 К (1000 К) , 1000 К (0 К) ,0 К ( - 1000 К) 
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curve in the solid phase, which is determined solely by the parameter B, is to be 
considered. 

The influence of signs in the case of the equality of absolute values of the 
parameters А, В is shown in Fig. 4. Beside expansion and contraction also a rise of 
a maximum or a minimum can be observed in the phase diagram, similarly to the 
phase diagrams of the real systems. 

When selecting the diagram with a minimum on the solidus and liquidus curves" 
as the most interesting variant in Fig. 4, we can model the rise of a minimum by 
gradually increasing the absolute value of the parameter (Fig. 5). An inter-step in 
this trend was found to be the case when both curves have a common tangent in the 

Fig. 4. The influence of parameters А, В (Hi = H2 = 10 000 K). 
A ( B ) = - 1 0 0 0 K ( - 1 0 0 0 K ) ,1000 К (1000 К) , 

- 1000 К (1000 К) ,1000 К (^ 1000 К) 
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Fig. 5. The rise of a minimum on the liquidus and solidus curves (Hi = H2 = 10 000 K). 
A(B) = 0K(0K) , -200K(200K) , 

- 500 К (500 K ) — — , -1000 К (1000 К) 

point JC = 1. In all the modelled cases, the solubility curve occurs in the range of low 
temperatures (Tmax = В/2) and does not reach into the area of liquidus and solidus 
curves. When increasing the value of the parameter B, the solubility curve will 
approach the solidus curve till the intersection (Fig. 6). Then also the liquidus curve 
is intersected. A typical illustration of such a phase diagram is shown in Fig. 7. It is 
evident that the liquidus and solidus curves have a common tangent in one point. 
The connecting line of the intersections of the solubility curve in the solid phase 
with the solidus curve also passes through intersections on the liquidus curve, which 
otherwise can be proved by means of eqns (7a, 7b) and (9). This connecting line 
delimits the equilibrium part of the phase diagram. The course of the liquidus and 
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Fig. 6. Formation of the phase diagram with a limited solubility of components. 
A(B)=-1800K(1800K) , -2000 К (2000 К) , 

- 2200 К (2200 К) — • — , - 2400 К (2400 К) 

solidus curves below this temperature is to be considered as a metastable one and 
their interpretation can be inspired by an analogy in the physical chemistry: the 
continuous course of the van der Waals' isotherm for the liquid—vapour equilib­
rium. 

It is evident that the phase diagram of systems with a limited solubility has been 
obtained by solving the same set of equations as for the systems with an unlimited 
solubility, the difference being merely quantitative following the degree of the 
nonideality of the system. This approach is clearly more justified than the one 
assumed by Reisman. The obtained solution is continuous within the entire 
concentration range and it makes the mapping of the metastable area possible 
which is open to study if admitting the possible undercooling. 
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Fig. 7. Typical phase diagram with a limited solubility of components. 
Hi(H2) = 10 000 К (10 000 К), Л (В) = - 4000 К (4000 К). 

Liquidus curve ; solidus curve ; solubility curve in solid phase — • — ; 
connecting line 

A similar shape of the phase diagram is obtained also on assumption of an ideal 
behaviour in the liquid phase ( A = 0 K , В positive). With increasing B, the 
metastable part of the phase diagram moves towards lower temperatures (Fig. 8) 
and the liquidus curve gradually approximates the liquidus curves of the phase 
diagram with a zero solubility of components in the solid phase (simple eutectic 
systems). Thus the phase diagram of a simple eutectic system may be considered to 
be a limiting case of the general shape of a phase diagram with solid solutions for 
В —>oo. The value of the interaction parameter В expresses the readiness of the 
system to form solid solutions. A high positive value of В indicates that the 
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Fig. 8. Formation of a simple eutectic phase diagram (Hi = H2 = 10 000 K). 
A (B) = 0 К (2000 К) , 0 К (3500 К) , 0 К (5000 К ) — — , 0 К («> К) 

components will segregate on transition into the solid phase because of the higher 
energy of a solid solution compared to that of the individual components. 

The phase diagram with a limited solubility in the solid phase, mentioned in the 
introduction (Fig. lc), also can be modelled when choosing appropriate values A, 
B, and of AHf of the pure components. The composition of such a phase diagram 
by gradually decreasing the value of Tf,2 while preserving the other parameters is 
shown in Fig. 9. It is only the curvature of the left-hand branch of the solidus curve 
which does not correspond to the one shown in the textbooks, however, it is to be 
taken into consideration that when employing only two interaction parameters, it is 
difficult to compare in detail the modelled and the real phase diagrams. 
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Fig. 9. Formation of a phase diagram of the type lc. 
H, (H2) = 5000 К (1000 К), А (В) = 1000 К (1600 К). 

Т2 = 700К ,900 К ,П00 К — — . 

Conclusion 

Based on the generally valid relations for the phase equilibria in a system capable 
to form solid solutions and on the wide-spread method for expressing the 
nonideality of a system, we have been successful in: 

1. Proving that even the phase diagrams with a limited solubility in the solid 
phase can be composed as a continuous solution of the above equations; 

2. Mapping the metastable area of the phase diagram; 
3. Combining the solution of the liquidus and solidus curves with the solution of 

the solubility curve in the solid phase; 
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4. Proving that the phase diagram of a simple eutectic system is only a limiting 
case for a great value of В; 

5. Revealing the influence of the interaction parameters A and В (for the liquid 
and solid phase, respectively): the dominant influence of В on the solubility curve 
in the solid phase and of the difference A — В on the liquidus and solidus curves; 

6. Deriving the relations for the slopes of tangents to the liquidus and solidus 
curves in the proximity of pure components. 
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