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A procedure for determining necessary extent of information, completing
incomplete data on concentration course of reacting substances and obtaining
sufficient basis to calculate the optimum values of rate constants at unambigu-
ous description of nonfully defined reaction system is described in this paper. It
is based on the theory of vector spaces applied to mechanisms of chemical
reactions and involves construction and analysis of reaction matrix, determina-
tion of the dimension of stoichiometric space as well as establishment of
a convenient base system of vectors. The proposed procedure of calculation is
illustrated by some examples.

OnucaH MeTol HaXOXHEeHUs HeoOXOomMMOM MHGpOPMaLUH IS AONOJHEHHS
HEMONHBIX JaHHBIX 06 U3MEHEHUAX B KOHLEHTPALHUSIX pearupyrolux BEIECTB
U U MONMyYEeHHUs] HOCTaTOYHbIX OCHOBAaHMM JUI pacyeTa ONTUMAJILHBIX BEIU-
YUH KOHCTAHT CKOPOCTEN IPH ONMHUCAHMM He MOJIHOCTBIO ONpeNleIeHHOH peak-
LHMOHHOM cHcTeMbl. MeTol MCXOMMT U3 NPWIOXEHHUS] TEOPHH BEKTOPHBIX IIPOC-
TPAaHCTB K H3y4YEHHIO MEXAaHU3MOB XMMHMYECKHX peaKLMid 1 OCHOBaH Ha COCTaB-
JIEHNH ¥ aHaJIN3€e PEeaKUHOHHOH MaTPHIbI, YCTAHOBJIEHHH pa3Mepa CTEXHOMET-
PpUYECKOro NMpOCTPAHCTBAa M ONpENeICeHWH INMOAXOAsuied Oa3UCHOM CHCTEMBbI
BekTOpoB. IIpemnaraeMeri MeTon pacyeTa WUIIOCTPHPDOBAaH Ha MHOTHX
npuMepax.

In the present technical practice, we more and more frequently meet with the
problem of quantitative description of nonfully. defined complicated reaction
systems. As a rule, it is the exigency to calculate definite values of rate constants in
a system of differential equations derived on the basis of a supposed or evidenced
mechanism valid for a given reaction system while more or less complete data are

Chem. zvesti 38 (5) 649—661 (1984) 649



L. KOUDELKA

available about time course of concentration of the individual components which
constitute this reaction system.

In this connection, we must frequently solve the problem concerning the extent
of information necessary for a given mechanism to obtain a mathematically
unambiguous quantitative description of the whole system from the initial experi-
mental material, e.g. by kinetic expression in the form of a system of differential
equations with concrete values of rate constants so that it optimally and unambigu-
ously expresses the used initial data.

Theoretical

There are several papers dealing with the problem how to calculate the optimum
values of rate constants in complicated kinetic models. Many procedures allowing
satisfactorily rapid and reliable calculation were developed in the last two decades
[1—19]. All of them require the use of computer and presume the knowledge of
time dependence of concentration of all components which are present in the
designed kinetic model.

However, the concentration course of all reaction components is not known in
general case though these substances take part in the mechanism of the investigated
reaction system. For analytical or other reasons, the concentrations of all interme-
diates, instable complexes, etc. are not followed. Then we use the experimental
material describing only incompletely the reaction system for our calculation and
search for such set of rate constants which optimally expresses this incomplete
experimental collection. Different simplifications, e.g. application of the known
assumption of equilibrium concentration of activated complex, etc. are employed.
However, there is a question whether the values of rate constants thus obtained
also describe the complete experimental data in equally good manner or whether
other set of the values of constants describing the complete collection with equal or
better fitting does exist. From the mathematical point of view, it is a problem of
unambiguousness of solution with respect to the limited starting material. On the
other hand, we may so put the question that we inquire about the necessary extent
of experimental material guaranteeing unambiguousness of solution, i.e. how many
components and which of them must be analytically followed in order that the
calculated set of rate constants as well as the defined mechanism with correspond-
ing differential equations may give an unambiguous quantitative description of
the investigated reaction system.

The first part of this question (determination of the number of stoichiometrically
independent components) may be answered by using the application of the
mathematics of vector spaces to the problem of mechanisms and kinetics of
complicated reactions. The papers recently published in this field were summarized
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by Feinberg [20]. As our procedure starts from these studies and the cited
publication is not currently available, we present the basic description of the
analysis, method, and derived theorems.

The reaction system consisting of the m reacting components may be conceived
as an m-dimensional vector space IR™ where m unit vectors of the form e, =(1, 0,
0, 0),e=(0,1,0, Ouptoe,=(0,0,0, O0,1)exist. If we impose to this
reaction system a mechanism consisting of k equations, we may construct k
reaction vectors by combining unit vectors and corresponding equations of the used
mechanism. These k vectors constitute the so-called reaction matrix k X m.
Starting from the initial composition of reaction mixture expressed by a certain
point in the m-dimensional space of components, this composition changes with
time and forms the so-called composition or reaction trajectory.

A simple example, to a certain extent taken from [20], makes it easier to clear up
the preceding description and construction of reaction matrix.

We apply the mechanism

= A2

N Y4 @

to the three-dimensional space of the components A;, A,, and A; with unit vectors
e.=(1, 0, 0), e;=(0, 1, 0), and e;=(0, 0, 1).

We represent the reaction vector for reaction 2A; — A, as e,—2e,, for
reaction A, — Aj; as e;— e,, for inverse reaction A; — A, as e,— €;, and for
reaction A; — 2A,; as 2e; — e;. Then we use these vector differences for the
construction of the reaction matrix in the form

2 10
0 -1 1
0 1 -1 )

2 0 -1

The number of rows in matrix M is the total number of reactions of a given
mechanism while the number of columns expresses the number of the components
which take part in the mechanism.

Some important conclusions result from the theorems derived in paper [20]. For
a fixed mechanism, the reaction trajectory cannot-arbitrarily wander in the vector
space of components, but it is strictly limited to the so-called stoichiometric
subspace S or a space which is parallel with it. The dimension of the stoichiometric
space is given by the rank h of the reaction matrix M. This subspace expresses the
stoichiometric limitations imposed on the general space by the applied mechanism
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and all reaction trajectories, irrespective of concrete values of rate constants, must
lie in this stoichiometric space or a space which is parallel with it. Since the reaction
matrix is frequently singular and its rank is for many mechanisms lower than the
number of rows or columns, it appears sometimes that the dimension of the space
in which the reaction trajectory can occur is considerably reduced.

As for the concrete example of mechanism (A), the rank of matrix (1) is equal
to two and the stoichiometric subspace is formed by a plane in the three-dimensio-
nal space of concentrations of the reaction components. If we express the initial
composition of reaction mixture by the point (C}, C3, C9), all stoichiometrically
compatible compositions of reaction mixture lie on a plane which is parallel with
the stoichiometric plane and contains the point (C?, C3, C9). Different composition
trajectories appear on this plane at different values of the rate constants and
describe the time course of the composition of reaction mixture.

The exposition given by Feinberg is rather extensive and for this reason, we refer
to original paper {20].

Calculation of the composition of reaction mixture
from incomplete input information

As evident from the preceding text, the application of the above procedure to
arbitrary mechanism enables us to determine the dimension of stoichiometric
subspace, i.e. the number of the components which form a stoichiometrically
independent system in a given reaction system. However, it does not answer the
second equally important question, i.e. which concrete components constitute this
independent system and how it is possible to calculate the concentration course of
other components regarded as dependent in this connection. In order to solve this
problem, we had to develop the above method. We elaborated a procedure which
enables us to calculate unambiguously the composition of reaction mixture as
a function of time even if the information about time dependence of the
concentrations of all participating components is not available and the experimen-
tal material is considerably limited in some cases. At the same time, the procedure
makes possible to find .out which concentration courses must be investigated for
determining fully and unambiguously the quantitative relations in reaction system.
Its essence is based on these steps:

— construction of a kinetic model which expresses the supposed mechanism,

— formal integration of the model and formation of a system of linear
equations,

— construction of a reaction matrix and determination of its rank A,

— calculation of concrete submatrices of the dimension h X h with nonzero
determinant and mutual comparison of these submatrices,
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— selection of a convenient and admissible system of independent components,

— expression of balance relations between independent and dependent concen-
tration courses of components.

The dimension of the stoichiometric space given by the rank of reaction matrix M
determines the number of independent row (reaction) vectors which form the base
of the stoichiometric subspace. However, it also gives the number of independent
column vectors, i.e. the number of the components the concentration courses of
which also form the base of the stoichiometric subspace with respect to the
pertinent mechanism. The rank of matrix M expresses the dimension of the greatest
square matrix M with nonzero determinant, i.e. with columns and rows formed by
linearly independent vectors. For instance, if the rank of matrix (1) for mechanism
(A) is equal to two, there are two independent equations in this system and two
independent concentrations of components A;, while two rows and one column of
the matrix are a linear combination of other rows and columns (e.g. column 1= -2
(column 2 + column 3), row 3= —row 2, etc.).

Of course, the concrete rows and columns representing the base of the
stoichiometric subspace cannot be taken arbitrarily even if we know their number
(it is given by the rank of reaction matrix) because we could take the vectors which
are linearly dependent.

However, by calculating the determinants of all possible square submatrices of
the dimensions h X h we find out which of them are constituted as a system of
linearly independent row and column vectors (determinant different from zero).

Their number is dependent on the mechanism used. The serial numbers of
columns in these matrices give those components the concentrations of which are
linearly independent for a given mechanism and thus form one of possible bases of
the stoichiometric space. Among various possibilities we choose that one which is
the most convenient from the experimental and analytical point of view. Then
other column or row vectors are a linear combination of base vectors.

In the calculation we proceed as follows:

1. On the basis of the chosen or fixed mechanism we construct a system of m
differential equations, one equation for each reaction component. Respecting the
validity of the law of mass action, we express the functional dependence of the rate
on the composition of mixture for each partial equation of mechanism and in order
to simplify the calculation, we solve each reversible reaction as one kinetic unit.

For the above-mentioned example (three components of mechanism (A)) we
obtain the following expressions:

Equation 2A; —» A,

f1 = klcf (2)
Equation A, 2 A;
fz =k C— ks Cs (3 )
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Equation A; — 2A,

f3 = kG5 (4 )
The rate equations for individual components are

dC
d_t‘= ~h*h (5)
dC
Ez= fl —fz (6)
dC
—d—t3= fz _fs (7)

2. After integration of the rate equations (in our case (5—7) in the interval
from zero to t, we obtain

Ac,—=—cl-ci’=—£f,dt+£f3dt (8)
AG=C,— C3= J;'fldt-—j:fzdt (9)
AG=C,—C3= L'fzdt—J;',gdt (10)
3. If we write
L= fa (11)

we obtain a system of linear integral equations which assumes for our case the
following form

AC1= —Il +I3 (12)
AC,= L-L (13)
AC3= Iz—Ig (14)

4. We construct the reaction matrix, determine its rank # and calculate which
concrete submatrices of the dimension h X h have a nonzero determinant. We
select a convenient combination of the independently variable columns, i.e.
concentrations for quantitative description of the system. The concentration
courses of other components are to be calculated from the system of linear
equations obtained according to passage 3. In our case, it is obvious even from this
system of equations that these equations are not independent because it holds
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and provided the concentration course C; = f(¢) is known for two components, the
concentration course of the third component can be easily calculated. That is in
agreement with the preceding considerations concerning the dimension of stoichio-
metric subspace S and the rank of matrix (1) which was equal to two. Of course,
we need not take into consideration the stoichiometric subspace and reaction
matrix for so simple example because the linear dependence of eqns (12—14) is
evident. In complicated cases involving a greater number of components and
reactions the visual appreciation or casual search for the number and kind of
independent variables is not applicable because it does not provide all possibilities
of selection.

Let us give two more concrete examples with complete calculation. In
a six-component system, the aldol condensation of two aldehydes A; and A.
proceeds in the presence of base A; according to the following scheme

A+A, 2 A;
As+A, - A +AS (B)
A+A; - A +A
The reaction matrix assumes the form
-1-1 10
1 1-10

2 0 1 -1 -1
-1 1-10

(16)

O - O o
- O O o

and the calculation shows that its rank is h=3.
The concentration courses of components A;, A, and A, are available (Table 1,

Table 1

Example of calculation of concentration courses
Aldol condensation of two aldehydes

1 2 3 4 5 6 7
_t G C; (&} Ca Cs Cs
min  mol dm™ mol dm™> mol dm™ mol dm™® mol dm™3 mol dm™>

0 0.083 0.1 0.125 0 0 0

1 0.049 0.050 0.103 0.05Q 0.022 0.019

2 0.041 0.049 0.089 0.051 0.036 0.022

3 0.032 0.049 0.077 0.051 0.048 0.024

4 0.027 0.049 0.068 0.051 0.057 0.026

6 0.022 0.049 0.054 0.051 0.071 0.030

8 0.019 0.049 0.046 0.051 0.079 0.033
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columns 2, 3, and 4). Component Aj; is an instable complex and no specific
analytical method is known for components As and As.
We use the rate functions

fx=k1C|C2"k2C3 (17)
fo=ksC5Cs (18)
f:=kiC,Cs (19)
for writing the rate equations for individual components
dC
d—tlz —fi—fs (20)
dC
qt‘z= —fithatf (21)
dC.
d_t3=f1—fz—f3 (22)
dC.
‘at_4= -2 (23)
dC.
Go=h (24)
dC,
d_t6=f3 (25)

By integrating these equations, we obtain a system of linear equations in simplified
symbolization

AC=-1, -L (26)
AC,=-L+L+1; (27)
AG= L-L-1, (28)
ACi= -1, (29)
ACs= %, (30)
ACs= L (31)

On the basis of the rank 7 =3 we calculate the nonzero determinants of all
minors 3 X 3. Their number is twenty-four while the admissible combinations of
rows are two (1, 3, 4 and 2, 3, 4). As for the admissible combinations of columns,
there are twelve possibilities (e.g. 1, 2, 4; 1, 2, 5; 1, 3, 4, etc.).

We ascertain that the matrix formed from rows 1, 3, 4 and columns 1, 2,
4 constitutes a linearly independent system. Thus the knowledge of the concentra-
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tion courses of components A;, A,, and A, is sufficient for full description of the
reaction system. |

We may use eqns (26—31) or immediately the matrix M, for deriving the
stoichiometric relations for other components

AC3EC3—C(3)= —ACZ (32)
ACs=Cs— C2= — AC, (33)
ACs=Cs— C2=1/2(— AC,+ AC,+ AC,) (34)

On the basis of these equations and the known values C3= C3= Cg=0, we may
calculate the corresponding values of concentrations of components As, As, and A¢
as they are given in Table 1, columns 5, 6, and 7.

The reaction of acrolein with monopentaerythritol in an aqueous weak alkaline
medium may be described by the following scheme [21]

CH,=CH—CHO+H,0 =2 HOCH,—CH,—CHO
CH,=CH—CHO + C(CH,OH), = (CH,0H),C—CH,OCH,CH,CHO

which comprises five components and four reactions according to the equations

A;

Al + Ag —>
A3 —> A1 =+ A2
(©)
A] + A4 —> A5
As —> A1 + A4
The meaning of symbols is:
A; — acrolein
A, — water
A; — 2-hydroxypropanal
A, — monopentaerythritol

As — product of the reaction of acrolein with monopentaerythritol

Acrolein and monopentaerythritol are the components which are traced analyti-
cally. A typical time course of their concentrations is in Table 2 [21], columns 2 and
3. The concentration course of hydracrolein and product is not known while the
relatively small change in water content was not taken into account. The reaction
matrix for this system

.

-1 -1 1 00j

1 1-1 0 O
M3 -1 0 0 -1 1 (35)
10 0 1-1 '

e —
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Table 2

Example of calculation of concentration courses
Reaction of acrolein with monopentaerythritol

i 2 3 4 5
Known values Calculated values
f G C4_ Cs Cs
s mol dm™ mol dm > mol dm* mol dm™
N 0 9.53x 107 0.1000 0.0 0.0
| 200 8.40x 107 0.0996 0.73x 107> 0.4%x107
400 7.42x107° 0.0992 1.31x107° 0.8x 1072
600 6.57x107° 0.0989 1.86x107? 1.1x10°°
800 5.85% 1072 0.0986 2.28x107° 1.4%x107°
1000 5.23%x107? 0.0984 2.70x107* 1.6x107°
1200 4.72:% 1073 0.0982 3.01x107° 1.8x107°
1400 429x107° 0.0981 3.34%x10°° 1.9%x107°
1600 3.95x107? 0.0980 3.58x107° 2.0x107°

has the dimension 4 X 5, but its rank is only 4 = 2. On integration of the system of
rate equations

dCi B |

e fitfa—fat+fa | (36)

dG,

g - htk .

dG,

o =hh (38)

dC,

S TEales a5 (3973

dCs

== fi s (40)

where

fi=kiC.C (41)
f2 kzca (42)
f3 k:C.C, (43)
fa=ksCs ' (44)

we obtain in simplified form
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ACi=—-L+L-L+1L (45)
AC,=-L+L (46)
AC:= L-L (47)
AC,= ~L+1 (48)
ACs= L-I1, (49)

The nonzero determinants of the minors of matrix M; whith the dimension 2 X 2
enable us to select from eight independent column combinations among which the
combination (1, 4) also occurs. Thus we may take components A; and A, as
independent variables and obtain the balance relations from eqns (45—49) which
allow us to calculate the concentration course for components A, and As (at

Ci= C3=0).
C3 = AC4 — AC1 (50)
C5= "'AC4 (51)

We could also calculate the change in water concentration according to the
equation

but the concentration of water may be regarded as constant with negligible error
provided the reaction takes place in dilute solution.

The calculated values for A; and As are given in Table 2, columns 4 and 5. On
the basis of these data we may easily calculate the optimum values of rate constants
by the procedure described next.

The stoichiometric calculation of the concentration courses for the components
with missing data is frequently accompanied by the fact that the errors of
experimental values of concentrations of independent components may accumulate
in resulting values. That was especially observed if the linear combination of
vectors was represented by a more complicated expression or the resulting valae of
concentration was small when compared with the values of independent compo-
nents A,. The calculated concentration course was then not smooth, it was

disorderly and necessitated to be smoothed either visually or by regression.

Calculation of the rate constants

For the calculation of rate constants from the known concentration courses of
individual reactants on the basis of a given or fixed mathematical model, the
method according to Himmelblau [3] or in more complicated cases the nonlinear
optimization [15—1 9] proved to be good. We chose the sum of squared differences
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(absolute or relative) between the calculated values of concentration of individual
components in certain moments of time and the experimental values as a criterion
of fit. In order to evaluate the fit, we compared solely the values of those
components which formed the base of stoichiometric space because these ones
directly determine the concentration courses of other components as well. An
evaluation of superfluous number of reactants would not improve the accuracy of
result but only complicate the calculation. The determination of the rank of
reaction matrix, determinants of the corresponding submatrices with the statement
of permitted combinations of linearly independent vectors and the calculation of
the optimum system of rate constants nearly always requires the use of a computer.
The pertinent programs are partly available and partly have been designed by us.

Symbols

' reaction components

" concentrations of reaction components

unit vectors in reaction space

rate function

integral of rate function

rank of reaction matrix

number of equations of mechanism and number of reaction vectors
rate constant for the j-th equation of mechanism

number of components of mechanism and dimension of reaction space

Indices

i denotation of the corresponding component; i=1, 2, ... m
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