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A procedure for determining necessary extent of information, completing 
incomplete data on concentration course of reacting substances and obtaining 
sufficient basis to calculate the optimum values of rate constants at unambigu­
ous description of nonfully defined reaction system is described in this paper. It 
is based on the theory of vector spaces applied to mechanisms of chemical 
reactions and involves construction and analysis of reaction matrix, determina­
tion of the dimension of stoichiometric space as well as establishment of 
a convenient base system of vectors. The proposed procedure of calculation is 
illustrated by some examples. 

Описан метод нахождения необходимой информации для дополнения 
неполных данных об изменениях в концентрациях реагирующих веществ 
и для получения достаточных оснований для расчета оптимальных вели­
чин констант скоростей при описании не полностью определенной реак­
ционной системы. Метод исходит из приложения теории векторных прос­
транств к изучению механизмов химических реакций и основан на состав­
лении и анализе реакционной матрицы, установлении размера стехиомет-
рического пространства и определении подходящей базисной системы 
векторов. Предлагаемый метод расчета иллюстрирован на многих 
примерах. 

In the present technical practice, we more and more frequently meet with the 
problem of quantitative description of nonfully defined complicated reaction 
systems. As a rule, it is the exigency to calculate definite values of rate constants in 
a system of differential equations derived on the basis of a supposed or evidenced 
mechanism valid for a given reaction system while more or less complete data are 
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available about time course of concentration of the individual components which 
constitute this reaction system. 

In this connection, we must frequently solve the problem concerning the extent 
of information necessary for a given mechanism to obtain a mathematically 
unambiguous quantitative description of the whole system from the initial experi­
mental material, e.g. by kinetic expression in the form of a system of differential 
equations with concrete values of rate constants so that it optimally and unambigu­
ously expresses the used initial data. 

Theoretical 

There are several papers dealing with the problem how to calculate the optimum 
values of rate constants in complicated kinetic models. Many procedures allowing 
satisfactorily rapid and reliable calculation were developed in the last two decades 
[1—19]. All of them require the use of computer and presume the knowledge of 
time dependence of concentration of all components which are present in the 
designed kinetic model. 

However, the concentration course of all reaction components is not known in 
general case though these substances take part in the mechanism of the investigated 
reaction system. For analytical or other reasons, the concentrations of all interme­
diates, instable complexes, etc. are not followed. Then we use the experimental 
material describing only incompletely the reaction system for our calculation and 
search for such set of rate constants which optimally expresses this incomplete 
experimental collection. Different simplifications, e.g. application of the known 
assumption of equilibrium concentration of activated complex, etc. are employed. 
However, there is a question whether the values of rate constants thus obtained 
also describe the complete experimental data in equally good manner or whether 
other set of the values of constants describing the complete collection with equal or 
better fitting does exist. From the mathematical point of view, it is a problem of 
unambiguousness of solution with respect to the limited starting material. On the 
other hand, we may so put the question that we inquire about the necessary extent 
of experimental material guaranteeing unambiguousness of solution, i.e. how many 
components and which of them must be analytically followed in order that the 
calculated set of rate constants as well as the defined mechanism with correspond­
ing differential equations may give an unambiguous quantitative description of 
the investigated reaction system. 

The first part of this question (determination of the number of stoichiometrically 
independent components) may be answered by using the application of the 
mathematics of vector spaces to the problem of mechanisms and kinetics of 
complicated reactions. The papers recently published in this field were summarized 

650 Chem. zvesti 38 (5) 649—661 (1984) 



NONFULLY DEFINED REACTION SYSTEMS 

by Feinberg [20]. As our procedure starts from these studies and the cited 
publication is not currently available, we present the basic description of the 
analysis, method, and derived theorems. 

The reaction system consisting of the m reacting components may be conceived 
as an m-dimensional vector space IRM where m unit vectors of the form ei = (1, 0, 
0, 0), e2 = (0, 1, 0, 0) up to em = (0, 0, 0, 0, 1) exist. If we impose to this 
reaction system a mechanism consisting of к equations, we may construct к 
reaction vectors by combining unit vectors and corresponding equations of the used 
mechanism. These к vectors constitute the so-called reaction matrix kxm. 
Starting from the initial composition of reaction mixture expressed by a certain 
point in the m-dimensional space of components, this composition changes with 
time and forms the so-called composition or reaction trajectory. 

A simple example, to a certain extent taken from [20], makes it easier to clear up 
the preceding description and construction of reaction matrix. 

We apply the mechanism 

2 A 1 ^ A 2 

V 
to the three-dimensional space of the components A b A2, and A3 with unit vectors 
ei = (l, 0, 0), e2 = (0, 1, 0), and e 3 = (0, 0, 1). 

We represent the reaction vector for reaction 2Ai —> A2 as e 2 - 2 e b for 
reaction A2 -» A3 as e3 - e2, for inverse reaction A3 —• A2 as e2 - e3, and for 
reaction A3 —> 2Ai as 2ei — e3. Then we use these vector differences for the 
construction of the reaction matrix in the form 

-2 1 0 

0 -1 1 
M 0 1 - 1 W 

2 0 - 1 

The number of rows in matrix M is the total number of reactions of a given 
mechanism while the number of columns expresses the number of the components 
which take part in the mechanism. 

Some important conclusions result from the theorems derived in paper [20]. For 
a fixed mechanism, the reaction trajectory cannot arbitrarily wander in the vector 
space of components, but it is strictly limited to the so-called stoichiometric 
subspace S or a space which is parallel with it. The dimension of the stoichiometric 
space is given by the rank h of the reaction matrix M. This subspace expresses the 
stoichiometric limitations imposed on the general space by the applied mechanism 
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and all reaction trajectories, irrespective of concrete values of rate constants, must 
lie in this stoichiometric space or a space which is parallel with it. Since the reaction 
matrix is frequently singular and its rank is for many mechanisms lower than the 
number of rows or columns, it appears sometimes that the dimension of the space 
in which the reaction trajectory can occur is considerably reduced. 

As for the concrete example of mechanism (A), the rank of matrix (Í ) is equal 
to two and the stoichiometric subspace is formed by a plane in the three-dimensio­
nal space of concentrations of the reaction components. If we express the initial 
composition of reaction mixture by the point (C?, C?, C?), all stoichiometrically 
compatible compositions of reaction mixture lie on a plane which is parallel with 
the stoichiometric plane and contains the point (C?, C2, C°). Different composition 
trajectories appear on this plane at different values of the rate constants and 
describe the time course of the composition of reaction mixture. 

The exposition given by Feinberg is rather extensive and for this reason, we refer 
to original paper [20]. 

Calculation of the composition of reaction mixture 
from incomplete input information 

As evident from the preceding text, the application of the above procedure to 
arbitrary mechanism enables us to determine the dimension of stoichiometric 
subspace, i.e. the number of the components which form a stoichiometrically 
independent system in a given reaction system. However, it does not answer the 
second equally important question, i.e. which concrete components constitute this 
independent system and how it is possible to calculate the concentration course of 
other components regarded as dependent in this connection. In order to solve this 
problem, we had to develop the above method. We elaborated a procedure which 
enables us to calculate unambiguously the composition of reaction mixture as 
a function of time even if the information about time dependence of the 
concentrations of all participating components is not available and the experimen­
tal material is considerably limited in some cases. At the same time, the procedure 
makes possible to find out which concentration courses must be investigated for 
determining fully and unambiguously the quantitative relations in reaction system. 
Its essence is based on these steps: 

— construction of a kinetic model which expresses the supposed mechanism, 
— formal integration of the model and formation of a system of linear 

equations, 
— construction of a reaction matrix and determination of its rank h, 
— calculation of concrete submatrices of the dimension hxh with nonzero 

determinant and mutual comparison of these submatrices, 
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— selection of a convenient and admissible system of independent components, 
— expression of balance relations between independent and dependent concen­

tration courses of components. 
The dimension of the stoichiometric space given by the rank of reaction matrix M 

determines the number of independent row (reaction) vectors which form the base 
of the stoichiometric subspace. However, it also gives the number of independent 
column vectors, i.e. the number of the components the concentration courses of 
which also form the base of the stoichiometric subspace with respect to the 
pertinent mechanism. The rank of matrix M expresses the dimension of the greatest 
square matrix M with nonzero determinant, i.e. with columns and rows formed by 
linearly independent vectors. For instance, if the rank of matrix (1) for mechanism 
(A) is equal to two, there are two independent equations in this system and two 
independent concentrations of components A,, while two rows and one column of 
the matrix are a linear combination of other rows and columns (e.g. column 1 = — 2 
(column 2 +column 3), row 3= —row 2, etc.). 

Of course, the concrete rows and columns representing the base of the 
stoichiometric subspace cannot be taken arbitrarily even if we know their number 
(it is given by the rank of reaction matrix) because we could take the vectors which 
are linearly dependent. 

However, by calculating the determinants of all possible square submatrices of 
the dimensions h x h we find out which of them are constituted as a system of 
linearly independent row and column vectors (determinant different from zero). 

Their number is dependent on the mechanism used. The serial numbers of 
columns in these matrices give those components the concentrations of which are 
linearly independent for a given mechanism and thus form one of possible bases of 
the stoichiometric space. Among various possibilities we choose that one which is 
the most convenient from the experimental and analytical point of view. Then 
other column or row vectors are a linear combination of base vectors. 

In the calculation we proceed as follows: 
1. On the basis of the chosen or fixed mechanism we construct a system of m 

differential equations, one equation for each reaction component. Respecting the 
validity of the law of mass action, we express the functional dependence of the rate 
on the composition of mixture for each partial equation of mechanism and in order 
to simplify the calculation, we solve each reversible reaction as one kinetic unit. 

For the above-mentioned example (three components of mechanism (A)) we 
obtain the following expressions: 

Equation 2AX —• A2 

П = к,С\ (2) 
Equation A2 *± A3 

f2 = k2C2-k3C3 (3) 
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Equation A3 —> 2Ai 
Í3 = k4C3 (4) 

The rate equations for individual components are 

^ = - / . + / 3 (5) 

f - '-A ^ 
^ = Л - / , (7) 

2. After integration of the rate equations (in our case (5—7) in the interval 
from zero to t, we obtain 

AC^C-Cl^ - f /1 dŕ+ f /3 d/ (S) 
Jo Jo 

AC2 = C2-C°2 = ľ fidt-ľ f2dt (9) 

4Сз = Сз-С?= í f2dt-f f3dt (10) 
Jo Jo 

3. If we write 

í = ľ /, dř 
Jo 

( U ) 

we obtain a system of linear integral equations which assumes for our case the 
following form 

АСг=-1г +U (12) 

AC2= h-I2 (13) 

AC3= I2-I3 (14) 

4. We construct the reaction matrix, determine its rank h and calculate which 
concrete submatrices of the dimension hxh have a nonzero determinant. We 
select a convenient combination of the independently variable columns, i.e. 
concentrations for quantitative description of the system. The concentration 
courses of other components are to be calculated from the system of linear 
equations obtained according to passage 3. In our case, it is obvious even from this 
system of equations that these equations are not independent because it holds 

ЛС1 + ЛС2 + ЛС3 = 0 (15) 
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and provided the concentration course С =/(0 is known for two components, the 
concentration course of the third component can be easily calculated. That is in 
agreement with the preceding considerations concerning the dimension of stoichio­
metric subspace S and the rank of matrix (Í ) which was equal to two. Of course, 
we need not take into consideration the stoichiometric subspace and reaction 
matrix for so simple example because the linear dependence of eqns (12—14) is 
evident. In complicated cases involving a greater number of components and 
reactions the visual appreciation or casual search for the number and kind of 
independent variables is not applicable because it does not provide all possibilities 
of selection. 

Let us give two more concrete examples with complete calculation. In 
a six-component system, the aldol condensation of two aldehydes Ai and A4 
proceeds in the presence of base A2 according to the following scheme 

A, + A2 

A3 + A4 

A, + A3 

5P* 

- • 

^ 

A3 

A2 + A5 

A2 + A6 

(B) 

The reaction matrix assumes the form 

- 1 - 1 1 0 0 0 

1 1 - 1 0 0 0 

0 1 - 1 - 1 1 0 

- 1 1 - 1 0 0 1 

de) 

and the calculation shows that its rank is h = 3. 
The concentration courses of components A b A2, and A4 are available (Table 1, 

Table 1 

Example of calculation of concentration courses 
Aldol condensation of two aldehydes 

1 

t 

min 

0 

1 

2 

3 

4 

6 

8 

2 

С 

mol d m - 3 

0.083 

0.049 

0.041 

0.032 

0.027 

0.022 

0.019 

3 

c2 
mol d m - 3 

0.1 

0.050 

0.049 

0.049 

0.049 

0.049 

0.049 

4 

c3 
mol d m - 3 

0.125 

0.103 

0.089 

0.077 

0.068 

0.054 

0.046 

5 

C 4 

mol d m - 3 

0 

0.05Q 

0.051 

0.051 

0.051 

0.051 

0.051 

6 

Cs 

mol dm~3 

0 

0.022 

0.036 

0.048 

0.057 

0.071 

0.079 

7 

C6 

mol dm" 3 

0 

0.019 

0.022 

0.024 

0.026 

0.030 

0.033 
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columns 2, 3, and 4). Component A3 is an instable complex and no specific 
analytical method is known for components A5 and A6. 

We use the rate functions 

fi = klC1C2-k2C3 (17) 

f2=k3C3C4 (18) 

f3 = k4CľC3 (19) 

for writing the rate equations for individual components 

^ - - / . - / . (20) 

f=-A+A+A (Я) 

^'h-h-h (22) 

^ — A (23) 

áCs 
d/ ' 

(24) 

f = /з (25) 

By integrating these equations, we obtain a system of linear equations in simplified 
symbolization 

ACl=-I1 -I3 (26) 

AC2=-Il + l2+h (27) 

AC3= h-h-I3 (28) 

AC4= -I2 (29) 

AC5= I2 (30) 

ACe= h (31) 

On the basis of the rank /i=3 we calculate the nonzero determinants of all 
minors 3 x 3 . Their number is twenty-four while the admissible combinations of 
rows are two (1, 3, 4 and 2, 3, 4). As for the admissible combinations of columns, 
there are twelve possibilities (e.g. 1, 2, 4; 1, 2, 5; 1, 3, 4, etc.). 

We ascertain that the matrix formed from rows 1, 3, 4 and columns 1, 2, 
4 constitutes a linearly independent system. Thus the knowledge of the concentra-
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