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Integral form of the LeChatelier—Shreder equation derived for different 
forms of temperature dependence of ACp is presented. The temperature 
dependence may be given either by a functional relationship or by the table of 
values. If the functional relationship is chosen, then it is recommended to use 
a polynomial in difference of temperatures from the melting point instead of 
a polynomial in absolute temperature. In practical applications the former 
procedure is better founded. 

В работе приведен интегральный вид уравнения ЛеШателье - Шредера 
для различных типов температурной зависимости АСР: как для функцио
нально заданной, так и для заданной в виде таблицы. В случае функцио
нальной зависимости предложена степенная формула, в которой, однако, 
используется не абсолютная температура, а разность от температуры 
плавления. Этот способ более обоснован для практического исполь
зования. 

Phase equilibrium solidus—liquidus is described by the LeChatelier—Shreder 
equation the differential form of which is presented by Malinovský [1] 

d l n a = ^ p d T (1) 

where a is the activity of component in liquid phase, Ar/175 is the enthalpy of phase 
transition solidus—liquidus, R is gas constant, and T is absolute temperature. 

Integral form of the LeChatelier—Shreder equation can be obtained by integra
tion of eqn (1) in limits (T, Tf) 

lna 
_ 1 Г< AH*'* (9. 
--Ř)r~ř-dT ( 2 ) 

(At T = Tf the activity of pure component equals one.) By integration of the right 
side of eqn ( 2 ) the following cases can occur: 

1. AFľ/s = const = AH* (it does not depend on temperature). Then the integra
tion ( 2 ) yields the simplest form of the LeChatelier—Shreder equation 
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1па=^-(1/Г,-1/Г) (3) 

2. АН"' depends on temperature according to Kirchhof f's relation 

d(AHl/s) = AC; áT (4) 

but AÖp is constant. Integrating eqn (4) in limits (T, Tf) gives 

ArT'^Arf-ACriTt-T) (5) 

and finally by integration of eqn (2) we obtain 

AH*(I 1\ ACp(Tt л . T,\ ... 

3. AÖ'p is an arbitrary function of temperature. Then it holds 

4. The temperature dependence of ACXI
P

S is given as a polynomial in T, e.g. 

AC'; = a + bT+cT-2 (8) 

Double integration of eqn (7) gives in this case 

The last temperature dependence of ACP is most frequently used for the descrip
tion of heat capacities of solid and liquid substances. However, at the melting point, 
there is a discontinuous change in the heat capacity from Cp to Cp. Therefore it is 
more convenient and more advantageous to express A Cp not as a polynomial in T 
(as in the case of eqn (8)) but in the difference (T f - T). 
Thus 

АСу;1Я = ^ак(Т<-Т)п* (10) 
k=l 

where nk can be any nonnegative integer. For /ii=0 ax is identical with AClps/R 
at Tf. 

К we put eqn (10) into eqn (7) we obtain the final form of the 
LeChatelier—Shreder equation 

The terms akKk denote the contributions to In a corresponding to powers nk in eqn 
(10). К (it is further written without index к) replaces the double integral 
corresponding to power n 
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K = ÍT['T2ÍT^T,~T)" áT] dT ( Í 2 ) 

Solving this integral we obtain the following expression for К 

where 

and 

bi = Ci+ 2 ci ( f o r / = 1, bi = 1) 
y=/+l 

0 = ( - l ) ' ( " 1 ' 1 ) / ( / - l ) / = 2,3,...,/i + l 

We shall briefly describe the procedure for application of the derived relations : 

a) We calculate the binomial coefficients í J for given n. 

b) The result is divided by (/ — 1). 
c) Alternation of sings gives the coefficients с 
d) Summation of the coefficients с gives the coefficients 6,. 
e) For given T and Tf, К corresponding to chosen n is calculated according to 

eqn (13): 
f) Similar procedure is applied also for other powers. 
g) In я is calculated according to eqn (11), 
For a more convenient use of this procedure the coefficients bi were calculated 

for n ranging from 0 to 7 and they are presented in Table 1. They correspond to the 
fractions the denominator of which is for given n the same (it is written in the 
second column of the table). 

Table 1. Values of coefficients bi in eqn (13) (bi = BJJ) 

n 

0 
1 
2 
3 
4 
5 
6 
7 

/ 

1 
1 
2 
6 
24 
120 
720 

5 040 

Я, 

1 
1 
2 
6 
24 
120 
720 

5 040 

в2 

1 
5 
26 
154 

1044 

8 028 

69 264 

В, 

1 
10 
86 

- 756 

- 7 092 

-71856 

а 

2 
34 
444 

5 508 

69 264 

в5 

6 
- 156 

- 2 892 

-48 336 

В6 

24 
888 

22 224 

в7 

- 120 

-6 000 

Bs 

720 

As an example of application of the relation (13) we present the simplest case of 
temperature dependence of ACP, viz. ACP is constant (/*i=0). Then 
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АГ,= -1п(Гг/Г)4-(Гг/Г-1) 

For л2 = 1 the relation (13) leads to the expression 

K2=-T<\n(T<IT)+T<l2(TJT-l)(TJT+l) 

Therefore if ACP is a linear function of temperature, 

4 Q = fl, + fl2(r,-7) 
and then 

lnfl = 4 # f / # ( l / T f - l / r ) 4- axKx + a2K2 

Sometimes the temperature dependence of A Cp is not given by a functional 
relationship but in the form of table of values. It can hapen that we do not wish or 
cannot approximate these values by a functional relationship. We encountered this 
in the case of ACP of water [2] where initial steep increase of ACP observed by 
undercooling changes after exceeding temperature of homogeneous nucleation to 
decrease of heat capacity. Description of such a dependence of ACP by 
a continuous functional relationship is rather difficult (the polynomial (10) 
requires high powers). It seems to be better to solve the integration in eqn (7) not 
analytically but numerically. For this purpose it is convenient to rearrange eqn (7) 
in the following way 

- = f ( H H { C - ' W > H («) 
Then we can use one of the methods suitable for calculation of definite integrals 
(rectangular or trapezoidal or Simpson's rule, etc.). If the data are spaced 
unequally, we can use a procedure corresponding to the trapezoidal rule 

^ = f á ( C + G + i ) 4 r / - r í + i ) - É ( G + G>1)-ln(T//T/+1))/2 (15) 
\ /=o »=o / 

where К is the value of difference of both integrals in eqn (14) and G are the 
values of A Cp at temperatures 7). Index zero corresponds to melting temperature 
and the last index (n) to the temperature T (lower integration limit). 

Both the methods proposed for calculation of values of integral in the 
LeChatelier — Shreder equation can be applied to solution of practical problems 
and they offer special advantages when computers are used. 
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