Synthesis and pesticidal activity of O,S-dialkyl $O-(1-R^4-5-R^3-6-oxo-1H$ -pyridazin-4-yl) thiophosphates

V. KONEČNÝ and Š. VARKONDA

Research Institute of Agrochemical Technology, 810 04 Bratislava

Received 21 June 1978

Accepted for publication 26 June 1979

The synthesis of O,S-dialkyl $O-(1-R^4-5-R^3-6-oxo-1H$ -pyridazin-4-yl) thiophosphates (R^4 = alkyl, phenyl; R^3 = alkoxy, alkylthio, chlorine) is described. All the prepared compounds were tested for contact and systemic insecticidal, acaricidal, and ovicidal activities. The pesticidal activity and toxicity of the mostly active compounds against warm-blooded organisms were compared to the activities of the corresponding O,O,O-esters.

Описывается синтез O,S-диалкил O- $(1-R^4-5-R^3-6$ -оксо-1H-пиридазин-4-ил) тиофосфатов (R^4 =алкил, фенил; R^3 =алкокси, алкилтио, хлор). Все приготовленные соединения были испытаны на контактную и системную инсектицидную, акарицидную и овицидную активности. Пестицидная активность и токсичность наиболее активных соединений по отношению к теплокровным организмам была сравнена с активностью соответствующих O,O,O-сложных эфиров.

Continuing the study of the synthesis and pesticidal activity of 4-pyridazinyl organophosphates, we synthesized and spectrally characterized a new group of compounds I—XXV (Table 1) of the given formula (see p. 823).

We examined the prepared compounds as well as the analogous O,O-dialkyl O-(5-alkoxy-1-phenyl- and -methyl-6-oxo-1H-pyridazin-4-yl) thiophosphates XXVI—XXXIV (see the formula) described in [1, 2] for insecticidal activity and toxicity against warm-blooded organisms with the aim of finding out if this group of compounds is similarly so highly active and low toxic as were the O,S-dialkyl O-aryl thiophosphates [3—9]. The spectral methods were applied for the determination of the structures of the synthesized compounds XII and XXII (Table 2) in accordance with [10].

The synthesized compounds I—IX, XIX—XXI, and XXV did not exhibit significant activities in tests for contact (M. domestica, C. granaria, and A. fabae) and systemic (A. fabae) insecticidal, acaricidal (T. urticae), and ovicidal (T.

I—XXV XXVI—XXXIV	X = O, X = S,	Y = S, $Y = O,$	R^1 — R^4 see Table 1 R^2 = C_2H_5
	R^i	\mathbb{R}^3	R⁴
XXVI	C₂H₅	CH₃O	CH ₃
XXVII	C_3H_7	CH ₃ O	CH ₃
XXVIII	$(CH_3)_2CH$	CH ₃ O	CH ₃
XXIX	C_2H_5	CH₃O	C ₆ H ₅
XXX	C_3H_7	CH₃O	C ₆ H ₅
XXXI	(CH ₃)₂CH	CH₃O	C ₆ H ₅
XXXII	C_2H_5	C ₂ H ₅ O	C ₆ H ₅
XXXIII	C_3H_7	C ₂ H ₅ O	C_6H_5
XXXIV	(CH ₃) ₂ CH	C ₂ H ₅ O	C ₆ H ₅

urticae) activities and therefore were not included in Table 3. None of the synthesized O,S-esters was so much active on M. domestica in contact insecticidal tests as the O,O-esters. On C. granaria the compound X was partly active however, its activity was by an order lower than that of the analogous O,O-dialkyl derivative XXVI. On A. fabae the compounds XII and XXII were partly active but by two orders less than the O,O-dialkyl derivative XXVIII. In acaricidal activity on T. urticae several compounds were active; the most active was the compound XII, the compound XI was by an order less active. On the whole, none of the synthesized compounds showed so high activity as the O,O-dialkyl derivatives. In ovicidal tests on eggs of T. urticae both the synthesized O,S-dialkyl and the compared O,O-dialkyl derivatives were only slightly active.

It can be stated unambiguously that the synthesized O,S-dialkyl derivatives as well as the O,O-dialkyl derivatives prepared earlier are much less active than the O,S-dialkyl O-aryl thiophosphates. It was shown further that the O,S-dialkyl O-pyridazinyl thiophosphates are much less stable than the corresponding O,O-dialkyl derivatives.

The toxicity of the O,S-dialkyl derivatives against male rats (peroral, Table 3) was much lower than that of the corresponding O,O-dialkyl derivatives proving the assumption about the lower toxicity of O,S-dialkyl derivatives against warm-blooded organisms.

Calculated/found Yield n_D^{20} R^1 R^2 R^3 R4 Formula M Compound % % P % S C₂H₅ Cl CH₃ C₉H₁₄ClN₂O₄PS 312.69 9.90 10.25 69.4 1.5309 I C2H5 10.36 10.11 9.42 9.81 1.5326 II C_2H_5 C_3H_7 Cl CH₃ C10H16CIN2O4PS 326.71 61.8 9.60 9.91 9.81 90.2 1.5311 III C_2H_5 (CH₃)₂CH Cl CH₃ C₁₀H₁₆ClN₂O₄PS 326.71 9.42 9.76 10.07 8.55 27.8 1.5699 IVC₂H₅ Cl C₆H₅ C₁₄H₁₆ClN₂O₄PS 374.76 8.26 C_2H_5 8.60 8.86 C_3H_7 388.78 7.97 8.25 48.6 1.5730 \boldsymbol{V} C_2H_5 Cl C₆H₅ C₁₅H₁₈ClN₂O₄PS 8.12 8.61 46.2 1.5721 VI C₂H₅ (CH₃)₂CH Cl C₆H₅ C₁₅H₁₈ClN₂O₄PS 388.78 7.97 8.25 8.12 8.61 1.5324 VII C₂H₅ C₂H₅ Cl C_6H_{11} C₁₄H₂₂ClN₂O₄PS 380.81 8.13 8.42 41.4 7.98 8.69 VIII C₂H₅ C_3H_7 Cl C_6H_{11} C₁₅H₂₄ClN₂O₄PS 394.83 7.84 8.12 42.6 1.5341 8.41 8.16

Table 1

Characterization of the prepared compounds

Table 1 (Continued)

Compound	R¹	R²	R³	R⁴	Formula	M	Calculat	ed/found	Yield	n_{D}^{20}
Compound		K	K		romuia	IVI	% P	% S	%	<i>n</i> _D
IX	C ₂ H ₅	(CH₃)₂CH	Cl	C ₆ H ₁₁	C ₁₅ H ₂₄ ClN ₂ O ₄ PS	394.83	7.84 7.68	8.12 8.00	49.6	1.5336
X	C_2H_5	C_2H_5	СН₃О	CH ₃	$C_{10}H_{17}N_2O_5PS$	308.28	10.05 9.85	10.40 10.73	58.4	1.5270
XI	C ₂ H ₅	C_3H_7	СН₃О	CH ₃	$C_{11}H_{19}N_2O_5PS$	322.30	9.61 9.64	9.95 10.14	62.8	1.5212
XII	C₂H₅	(CH₃)₂CH	СН₃О	CH ₃	$C_{11}H_{19}N_2O_5PS$	322.30	9.61 9.80	9.95 10.26	76.2	1.5299
XIII	C ₂ H ₅	C ₂ H ₅	CH₃O	C ₆ H ₅	$C_{16}H_{21}N_2O_5PS$	370.34	8.35 8.49	8.66 8.87	78.5	1.5650
XIV	C₂H₅	C_3H_7	СН₃О	C ₆ H ₅	$C_{17}H_{23}N_2O_5PS$	384.36	8.06 8.09	8.34 8.24	69.6	1.5662
XV	C_2H_5	(CH₃)₂CH	СН₃О	C ₆ H ₅	$C_{17}H_{23}N_2O_5PS$	384.36	8.06 8.13	8.34 8.76	76.9	1.5644
XVI	C ₂ H ₅	C ₂ H ₅	C₂H₅O	C ₆ H ₅	C ₁₇ H ₂₃ N ₂ O ₅ PS	384.36	8.06 8.00	8.34 8.43	69.5	1.5639

Chem. zvesti 33 (6) 822-829 (1979)

Table 1 (Continued)

Characterization of the prepared compounds

Compound	R¹	R²	R³	R ⁴	Formula	М -	Calculate	d/found	Yield	n_{D}^{20}
Compound	K		Κ		rormwa	M -	% P	% S	%	<i>n</i> _D
XVII	C_2H_5	C ₃ H ₇	C₂H₅O	C ₆ H ₅	$C_{18}H_{25}N_2O_5PS$	398.38	7.77 7.55	8.05 8.45	65.2	1.5588
XVIII	C₂H₅	(CH₃)₂CH	C₂H₅O	C ₆ H ₅	$C_{18}H_{25}N_2O_5PS$	398.38	7.77 8.03	8.05 8.16	78.5	1.5532
XIX	C₂H₅	C₂H₅	C ₂ H ₅ S	CH ₃	$C_{11}H_{19}N_2O_4PS_2$	338.37	9.15 9.12	18.95 19.05	47.2	1.5489
XX	C₂H₅	C₃H ₇	C₂H₅S	CH ₃	$C_{12}H_{21}N_2O_4PS_2$	352.39	8.79 8.53	18.20 18.40	56.2	1.5460
XXI	C₂H₅	(CH₃)₂CH	C₂H₅S	CH ₃	$C_{12}H_{21}N_2O_4PS_2$	352.39	8.79 8.49	18.20 18.47	87.5	1.5401
XXII	(CH₃)₂CH	C ₂ H ₅	СН₃О	СН3	$C_{11}H_{19}N_2O_5PS$	322.30	9.61 9.86	9.95 9.98	75.0	1.5199
XXIII	(CH₃)₂CH	C ₂ H ₅	СН₃О	C ₆ H ₅	$C_{16}H_{21}N_2O_5PS$	370.34	8.35 8.48	8.66 8.78	84.0	1.5645
XXIV	(CH ₃) ₂ CH	C_2H_5	C₂H₅O	C ₆ H ₅	$C_{17}H_{23}N_2O_5PS$	384.36	8.06 8.16	8.34 8.44	88.2	1.5566
XXV	(CH₃)₂CH	C₂H₅	C₂H₅S	СН₃	$C_{11}H_{19}N_2O_4PS_2$	338.37	9.15 9.31	18.95 19.16	81.2	1.5491

Spectral data of chosen compounds

	IIXX	IIX	pound	Com
	1659	XII 1658	ν(C=0)	
	1620	1619	ν(C=N)	IR, cm ⁻¹
	1269	1271	ν(P=O)	
(4.51) (3.77)	(4.55) 213	212	λmax	VU
(3.77)	(3.82) 287	289	$(\log \varepsilon)$	UV, nm
	1.35° m	1.40° m	$\nu(C=O) \ \nu(C=N) \ \nu(P=O) \ \lambda_{max} \ (\log \epsilon) \ \frac{CH_3CH_2}{(CH_3)_2CH}$	
	(4.55) (3.82) 213 287 1.35° m 3.65 s 4.10 s 3.69 q 4.85° m 3.81 s	1271 212 289 1.40° m 3.79 s 4.20° s 3.90° m 4.35° m 7.92 s	CH ₃ N CH ₃ O CH ₂	'H-NMR, δ(p.p.m.)
	3.69 q	3.90° 1	CH ₂	, δ(p.p.
	4.85° m	n 4.35° m	CH	m.)
	₹81 s	7.92 s	СН =СН-	

s — singlet, q — quartet, m — multiplet.a) Undistinguishable multiplet.

Insecticidal, acaricidal, and ovicidal activities (ED_{50} in %) and toxicity (LD_{50} in mg/kg) of some synthesized compounds Table 3

	Musca	Calandra	Aphis	T. urticae	ticae	d !. !
Compound	domestica	granaria	fabae	Females	Eggs	- IOXICILY
×	>0.5	0.086	0.1	0.040	>0.5	16.1
IAXX	0.0092	0.0066	0.00079	0.00010	>0.5	2.5—5
X	>0.5	>0.1	0.084	0.0066	>0.5	37.0
IIVXX	0.0051	0.050	0:00044	0.00023	0.018	8.0
IIX	0.10	0.10	0.050	0.00064	0.48	50.0
IIXX	0.10	>0.1	0.031	0.10	>0.5	35.0
IIIAXX	0.0040	0.0048	0.00035	0.000022	0.055	5.4
XIII	>0.5	>0.1	>0.1	>0.1	>0.5	55.0
XXXX	0.0084	>0.1	0.028	0.016	0.50	2.0
VIX	>0.5	>0.1	>0.1	0.066	>0.5	81.0
XXX	0.11	>0.1	0.0010	>0.1	0.083	31.0
ΧV	0.10	>0.1	>0.1	0.032	>0.5	90.0
IIIXX	>0.5	>0.1	>0.1	0.016	0.42	74.0
IXXX	0.0033	0.0051	0.0022	0.0086	0.052	14.0
XVI	>0.5	>0.1	>0.1	>0.1	>0.5	120.0
IIXXX	0.0019	>0.1	0.0045	0.0021	>0.5	13.0
XVII	>0.5	>0.1	>0.1	0.026	>0.5	160.0
IIIXXX	0.12	>0.1	0.052	>0.1	0.048	23.0
XVIII	>0.5	>0.1	>0.1	0.017	>0.5	160.0
VIXX	>0.5	>0.1	>0.1	0.021	>0.5	125.0
VIXXX	0.0031	0.0083	$0.008\dot{2}$	0.0052	0.35	19.0
Malathion	0.017	0.0056	0.0046	I	ſ	1
Fenitrothion	0.0021	0.00053	0.0017	1	1	I
Karbofenthion	I	1	ı	0.000081	0.0025	Ι
The second secon						

b) The signal of CH₃O protons is overlapped by the signal of CH₂ protons.

Experimental

The starting $5-R^3-1-R^4-6-\infty -1H$ -pyridazin-4-ols were prepared after [11], O, S-dialkyl chlorothiophosphates after [12].

The i.r. spectra were measured on a UR-20 spectrophotometer (Zeiss, Jena) in the region of 700—3700 cm⁻¹ in chloroform solutions (concentration 0.02—0.06 M; cell thickness 0.089 mm). The apparatus was calibrated by polystyrene foil.

The u.v. spectra were taken on a Specord UV VIS spectrometer in methanol (concentration 1.0×10^{-4} — 2.0×10^{-5} M; cell thickness 1.0 cm).

¹H-N.m.r. spectra were measured on a Tesla BS 487 C apparatus (80 MHz) in CDCl₃ in the presence of internal standards TMS and HMDS. The spectral data are presented in Table 2.

Contact insecticidal activity was followed on Musca domestica L., Calandra granaria L., and Aphis fabae SCOP using Malathion (O,O-dimethyl S-1,2-(diethoxycarbonyl)ethyl dithiophosphate) and Fenitrothion (O,O-dimethyl O-(3-methyl-4-nitrophenyl) thiophosphate) as standards. Systemic insecticidal activity was followed on A. fabae using Thiometon (O,O-dimethyl S-(2-ethylthioethyl) dithiophosphate) as standard. Acaricidal activity was followed on females of Tetranychus urticae KOCH and ovicidal activity on eggs of T. urticae using Karbofenthion (O,O-diethyl S-(4-chlorophenylthiomethyl) dithiophosphate) as standard. The methods for the determination of insecticidal, acaricidal, and ovicidal activities were published in [13, 14].

The acute oral toxicity was determined on male rats (130—150 g), race Wistar, after the method described in [1]. The results are presented in Table 3.

$$O,S$$
-Dialkyl O - $(1-R^4-5-R^3-6-oxo-1H$ -pyridazin-4-yl) thiophosphates $(I$ — $XXV)$

To sodium or potassium 1,5-disubstituted 6-oxo-1H-pyridazin-4-ol (0.11 mol) in ethyl methyl ketone (100 ml) O,S-dialkyl chlorothiophosphate (0.1 mol) was added under stirring. Stirring was continued for 3 h at 60°C, then the mixture was cooled and benzene (100 ml) was added. After washing the solution with water, 5% sodium carbonate solution, and water the mixture was dried and benzene was distilled off under reduced pressure. The residue was purified by column chromatography (SiO₂) using benzene with the addition of acetone (0—10%) as eluting agent. Characterization of compounds is presented in Table 1.

References

- 1. Konečný, V., Varkonda, Š., and Vargová, M., Pestic. Sci. 7, 107 (1976).
- 2. Konečný, V., Pestic. Sci. 7, 97 (1976).
- Kishino, Sh., Yamada, Y., Kudamatsu, A., Sumi, Sh., and Shiokawa, K., Ger. Offen. 2043204;
 Chem. Abstr. 75, 88306m (1971).
- Kishino, Sh., Yamada, Y., Kurahashi, Y., and Kume, T., Ger. Offen. 2100221; Chem. Abstr. 75, 140525y (1971).
- Kishino, Sh., Kudamatsu, A., Kurahashi, Y., and Shiokawa, K., Ger. Offen. 2100687; Chem. Abstr. 75, 140479m (1971).

- Kishino, Sh., Kudamatsu, A., and Shiokawa, K., Ger. Offen. 2188495; Chem. Abstr. 76, 59442r (1972).
- Takahashi, S., Ueda, H., Ishikawa, H., and Sasaki, K., Japan. 7334583; Chem. Abstr. 80, 120244f (1974).
- Beriger, E., Boeger, M., Drábek, J., and Kristiansen, O., Ger. Offen. 2354653; Chem. Abstr. 81, 49425d (1974).
- 9. Ide, H., Kanda, M., and Ishikawa, H., Japan. Kokai 7599863; Chem. Abstr. 83, 189328r (1975).
- 10. Konečný, V. and Kováč, Š., Pestic. Sci. 9, 571 (1078).
- 11. Konečný, V., Chem. Zvesti 30, 663 (1976).
- 12. Petrov, K. A., Sokolovskii, G. A., and Poles, B. M., Zh. Obshch. Khim. 26, 3383 (1956).
- 13. Demečko, J. and Konečný, V., Agrochémia (Bratislava) 10, 127 (1970).
- 14. Drábek, J., Pastorek, I., and Konečný, V., J. Sci. Food Agr. 20, 152 (1969).

Translated by A. Kardošová