Reactions of 4-substituted cinnamoyl isothiocyanates with 1-phenoxy-2,3-epoxypropane and sodium hydrogen selenide

M. DZURILLA and P. KRISTIAN

Department of Organic Chemistry, Faculty of Natural Sciences, P. J. Šafárik University, 041 67 Košice

Received 13 July 1978

The synthesis of 2-(4-X-cinnamoylimino)-5-phenoxymethyl-1,3-oxathiolanes and 6-(4-X-phenyl)-2-thioxo-4-oxoperhydro-1,3-selenazines by cyclization of 4-substituted cinnamoyl isothiocyanates with 1-phenoxy-2,3epoxypropane and sodium hydrogen selenide, respectively, is described. The structures of the nine synthesized compounds were proved by i.r. and ¹H-n.m.r. spectroscopy.

В работе описывается синтез 2-(4-X-циннамоилимино)-5-феноксиметил-1,3-оксатиоланов и 6-(4-X-фенил)-2-тиоксо-4-оксопергидро-1,3-селеназинов циклизацией 4-замещенных циннамоилизотиоцианатов с 1-фенокси-2,3-эпоксипропаном или гидроселенидом натрия. Спектры ¹H-ЯМР и ИК подтвердили структуру девяти новосинтезированных соединений.

Addition-cyclization and cycloaddition reactions of acyl isothiocyanates are more and more used for the preparation of new types of heterocyclic compounds, e.g. pyrimidines, thiazines, benzoxazines, thiadiazoles, etc. [1—5]. Feinauer and coworkers [6, 7] dealt with synthesis and properties of 1,3-oxathiolanes prepared from acetyl and benzoyl isothiocyanates. The reactions of sodium hydrogen selenide with different types of isothiocyanates led to preparation of new heterocyclic compounds [8].

On the basis of the mentioned facts we focused our attention on the study of these reactions with 4-substituted cinnamoyl isothiocyanates, which showed high biological activity [9], on purpose to obtain further types of 1,3-oxathiolanes and 1,3-selenazines. 4-Substituted cinnamoyl isothiocyanates as well as 1-phenoxy-2,3-epoxypropane and sodium hydrogen selenide, respectively, were used as starting compounds for the synthesis of 1,3-oxathiolanes and 1,3-selenazines.

The synthesis (Scheme 1) of 1,3-oxathiolanes was carried out by direct heating of 4-substituted cinnamoyl isothiocyanates with 1-phenoxy-2,3-epoxypropane under the catalytic action of lithium chloride at 120°C [6]. Addition of sodium

hydrogen selenide on the 4-substituted cinnamoyl isothiocyanates resulted in unstable addition products which after intramolecular stabilization (due to high nucleophilicity of selenium) afforded 1,3-selenazines.

X = H, CH3, CH30, CI, Br

Scheme 1

Experimental

Cinnamoyl isothiocyanate, 4-methylcinnamoyl isothiocyanate, 4-methoxycinnamoyl isothiocyanate, 4-chlorocinnamoyl isothiocyanate, and 4-bromocinnamoyl isothiocyanate were synthesized from the appropriate 4-substituted cinnamoyl chlorides and lead thiocyanate in benzene [10]. 1-Phenoxy-2,3-epoxypropane was prepared by treatment of 1-chloro-2,3-epoxypropane with phenol in the presence of sodium hydroxide [11] and sodium hydrogen selenide by the reaction of sodium borohydride with selenium in ethanol [12].

Infrared spectra of the synthesized compounds I—X were measured on a UR 20 spectrophotometer (Zeiss, Jena) in the region of 700—3600 cm⁻¹ in chloroform (anal. grade); concentration 0.05 mol 1⁻¹.

¹H-N.m.r. spectra were measured with a Tesla BS 487 A apparatus at 80 MHz in deuteriochloroform (0.4 mol l⁻¹) using hexamethyldisiloxane as internal standard.

2-(4-X-Cinnamoylimino)-5-phenoxymethyl-1,3-oxathiolanes (I-V)

To the 4-substituted cinnamoyl isothiocyanate (0.01 mol) 1-phenoxy-2,3-epoxypropane (0.01 mol) and lithium chloride (0.0001 mol) were added and the reaction mixture was heated at 120°C for 5 h. Then the mixture was cooled and the solid product was crystallized

Chem. zvesti 33 (6) 792-797 (1979)

Table 1

Characterization of the synthesized compounds

Compound		r		C	alculated/four	nd	Yield	M.p., °C		
	X	Formula	М	% C	% H	% N	%	Solvent		
2-(4-X-Cinnamoylimino)-5-phenoxymethyl-1,3-oxathiolanes										
I	Н	C ₁₉ H ₁₇ NO ₃ S	339.4	67.06 67.27	5.14 5.05	4.24 4.13	44	142—143 Ethanol		
II	CH ₃	$C_{20}H_{19}NO_3S$	353.4	67.97 67.58	5.42 5.07	3.96 4.12	42	165—167 Ethanol		
III	CH₃O	$C_{20}H_{19}NO_4S$	369.5	65.02 64.86	5.18 5.27	3.79 3.65	45	155—157 Ethanol		
IV	Cl	C ₁₉ H ₁₆ ClNO ₃ S	373.9	61.04 60.82	4.31 4.58	3.75 3.83	44	143—144 Ethanol		
V	Br	$C_{19}H_{16}BrNO_3S$	418.3	54.55 54.91	3.86 3.44	3.55 2.98	43	149—151 Ethanol		

Table 1 (Continued)

				Calculated/found					
Compound	X	Formula	M	% C	% Н	% N	Yield %	M.p., °C Solvent	
		6	-(4-X-Phenyl)	-2-thioxo-4-o	xoperhydro-1	,3-selenazines	3	44. 5 K 1967. 6 S	
VI	н	C ₁₀ H ₉ NOSSe	270.0	44.46	3.33	5.18	79	132—133	
				44.67	3.51	5.38		Chloroform—petroleum	
								ether	
VII	CH ₃	$C_{11}H_{11}NOSSe$	284.2	46.48	3.90	4.93	78	131—132	
				46.17	3.82	4.96		Ethanol—water	
VIII	CH ₃ O	C ₁₁ N ₁₁ NO ₂ SSe	300.2	41.01	3.69	4.67	72	147—149	
				41.08	3.84	4.45		Ethanol—water	
IX	Cl	C ₁₀ H ₈ CINOSSe	318.9	37.69	2.53	4.39	87	154—155	
				37.32	2.81	4.58		Ethanol—water	
X	Br	C ₁₀ H ₈ BrNOSSe	349.1	34.40	2.31	4.01	86	146—148	
				34.53	2.45	3.86		Ethanol-water	

hem. zvesti 33 (6) /92-/9/ (19/5

Table 2 $\label{eq:2} Infrared (cm^{-1}) \ and \ ^1H-n.m.r. \ (p.p.m.) \ spectral \ data \ of \ the \ synthesized \ compounds$

Compound	γ(CH = CH) v(C=C)	v(C=O)	v(NH)	v(NHCS)	δCH ₃	δCH ₂	δСН	δ CH = CH	δC ₆ H ₅	J _{AB} , Hz
	982	1619	1543; 1643	_	_		3.56; 4.27	5.11	6.65; 7.85	7.25	16
II	987	1621	1553; 1646	-	_	2.32	3.97; 4.27	5.05	6.62; 7.85	7.15	16
III	985	1616	1552; 1644	-		3.62	3.84; 4.27	5.08	6.64; 7.85	7.20	16
IV	986	1615	1540; 1647				3.50; 4.27	5.10	6.65; 7.82	7.20	16
\boldsymbol{v}	984	1616	1540; 1644	_	_	_	3.50; 4.27	5.15	6.65; 7.80	7.20	16
VI			1721	3345	1060; 1260; 1427		3.82	4.63		7.33	
VII	_	_	1722	3339	1055; 1265; 1432	2.32	3.26	4.60	_	7.17	
VIII	_	_	1723	3341	1064; 1261; 1430	3.77	3.22	4.70	_	7.15	-
IX	_		1724	3335	1067; 1266; 1431	_	3.25	4.75	_	7.30	
X	_	_	1723	3338	1078; 1262; 1430	_	3.25	4.62	_	7.37	_

from ethanol. Characterization of the synthesized compounds and their i.r. and ¹H-n.m.r. spectral data are given in Tables 1 and 2.

To the solution of sodium hydrogen selenide (0.015 mol) 4-substituted cinnamoyl isothiocyanate (0.01 mol) was added in small portions under stirring and cooling. Addition of diluted (1:1) hydrochloric acid resulted in the formation of a precipitate which was sucked, washed with water, dried, and crystallized from a suitable solvent. Characterization of the synthesized compounds and their i.r. and ¹H-n.m.r. spectral data are given in Tables 1 and 2.

References

- 1. Goerdeler, J. and Keuser, V., Chem. Ber. 97, 3106 (1964).
- 2. Dzurilla, M., Kristian, P., and Demjánová, E., Chem. Zvesti 27, 488 (1973).
- 3. Elmore, D. T. and Ogle, J., R., J. Chem. Soc. 1957, 4404.
- 4. Dzurilla, M. and Kristian, P., Collect. Czech. Chem. Commun. 41, 1388 (1976).
- 5. Hünig, S. and Hübner, K., Chem. Ber. 95, 937 (1962).
- 6. Feinauer, R., Jacobi, M., and Hamann, K., Chem. Ber. 98, 1782 (1965).
- 7. Brukhard, J., Feinauer, R., Gulbins, K., and Hamann, K., Chem. Ber. 99, 1912 (1966).
- 8. Kristian, P. and Kniežo, L., Collect. Czech. Chem. Commun. 43, 2298 (1978).
- 9. Kristian, P., Antoš, K., Drobnica, L., Nemec, P., and Dzurilla, M., Czech. 131553 (1969).
- 10. Kristian, P., Dzurilla, M., and Kováč, Š., Chem. Zvesti 23, 173 (1969).
- 11. Boyd, L. M. and Marle, N. M., J. Chem. Soc. 93, 840 (1908).
- 12. Klayman, D. L. and Griffin, T. S., J. Amer. Chem. Soc. 95, 197 (1973).

Translated by A. Kardošová