
Generalization of the Ilkovič equation corrected 
with respect to concentration dependence of 

the diffusion coefficient 

P. KUBÍČEK 

Department of Radioisotopes, Institute of Mining and Metallurgy, 
708 33 Ostrava 

Received 29 July 1977 

Accepted for publication 15 September 1978 

In this paper the theory of Polarographie method is generalized for the case 
that the diffusion coefficient is a linear function of concentration of the 
depolarizer. Besides, the spherical diffusion is also taken into account. The case 
of reversible reactions in the presence of indifferent electrolyte is solved. The 
solution results in the generalized corrected Ilkovič equation and in the relation 
between "apparent" diffusion coefficient and heterodiffusion coefficient. 

В работе была обобщена теория полярографического метода в случае, 
когда коэффициент диффузии является линейной функцией концен
трации деполяризатора и одновременно учитывается сферическая диф
фузия. Был решен случай обратимых реакций в присутствии посторон
него электролита. Решение приводит к обобщенному, исправленному 
уравнению Ильковича и к соотношению между «кажущимся» коэф
фициентом диффузии и коэффициентом гетеродиффузии. 

The theory of Polarographie method was developed on the assumption that the 
diffusion coefficient is independent of concentration of electroactive particles, i.e. 
D = const. The result of this theory is the Ilkovič equation [1] which presumes 
a plane diffusion layer. The real curvature of diffusion layer was taken into 
consideration by Koutecký [2], who corrected the Ilkovič equation and exactly 
solved the equation of convective diffusion in spherical coordinates by means of 
infinite series. In a later paper [3] published by Levích, another approximative 
method of solution is proposed. This solution leads to an inhomogeneous equation 
of convective diffusion which is easier to be solved and the result is in agreement 
with the correction according to Koutecký. 

The aim of this study is to generalize the theory of Polarographie method on the 
assumption that a linear relationship between diffusion coefficient and concentra
tion of the depolarizer exists. Reversible reactions and the presence of indifferent 
electrolyte which enables us to neglect the migration currents due to electric field in 
the solution with respect to the diffusion current will be taken into consideration. 
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GENERALIZATION OF THE ILKOVIČ EQUATION 

Theoretical 

Let us consider the equation of convective diffusion 

Be 
— + v grád с = div [D(c) grád с] (1) 
at 

which is written in spherical coordinates for the case of central symmetry 

d c 3c ^ , jB2c 2Bc\ BD(c)Bc 
— + vr— =D(c) (—* + - — ) + - r 1 ^ 3 - (2) 

Bt Br \Br r Br/ Br Br 

If we insert the expression 

D(c) = Dh(l + ac) (3) 

where Dh, a, and с are the heterodiffusion coefficient for c—»0, the coefficient 

characterizing the linear concentration dependence of the diffusion coefficient, and 

the concentration of the depolarizer, respectively, we obtain 

Be Be ^ /B2c 2 Bc\ 

dt Br \Br r Br/ 

For polarography, the initial and boundary conditions of the equation of diffusion 
(4) are 

c(r, t = 0) = co 

c(r = a,t) = c((p) c(r-+°°,t) = Co (5) 

where a, c 0 , and cp are the radius of drop, the concentration of depolarizer inside 
solution, and the potential of mercury dropping electrode, respectively. According 
to [3], it holds 

c(<p) = CoA е " ^ ф (6) 

where A is a constant proportional to the activity coefficient of ions. 

The solution of Polarographie method necessitates further treatment of eqn (4) 

which is described in original papers, e.g. [1] and [3] and we shall, therefore, 

present only the results. 

The diffusion takes place in a thin layer the thickness of which is very small in 

comparison with the drop radius a(t) that increases with time. We may substitute 

the following expression for the coordinate r 

r~a(t) + y- y<a(t) ! (7) 
Then it holds [1, 4] 
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( l ) . - ( l f ) - ^ | 
where 

The symbols <i, (70, 9, and m in expression (9) stand for the diameter of the 
capillary from which mercury drops, the linear flow rate of mercury in the capillary, 
the specific weight of mercury, and the flow rate of mercury running off per second, 
respectively. The radial flow rate of liquid during the growth of drop vT is given by 
the following expression [3] 

? 2 

Уг«^з-Т- + Лтз (10) 
Ъг 3 t yt v ' 

Now we must express the Laplace operator in spherical coordinates and substitute 
from eqn (7) and eqn (11) expressing the growing drop radius a (t) explicitly [4] 

a(t) = ytU3 (11) 

Hence, we obtain 

ЭУ 2 Эс_ д2с 2 de ŕ 

г ~ 2 " ! z - — ~z 2"! ~Т7з ~z \12) 
dr r or By yt ay 

If we take into consideration eqns (12), (10), (8), and (7), the equation of 
convective diffusion (4) may be transformed into the form 

?£ / 2 у _ / \ 3 с _ п Э2с 2 de 
dt \3t ^)dy-Dhdy2 + yt1,3dy + 

If we suppose 

\a\co<l (14) 

we can prove that the following inequality is fulfilled [3] 

2 dc 2 dc 2 dc d2c 
шг-<^^-т (15) 

r dr a(t) dy y t dy dy 

On the basis of this reasoning, the terms of littleness of the second order in the 
composite bracket in eqn (13) may be omitted and it may be assumed 

a D h c - 2

m ^ O (16) 
yt dy 
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For illustration, we shall write eqn (13) with approximation (16) in the form 

Эс 2 у дс Э2с 2Dh3c_ у2 Эс 
Т~ — TT — Z Ь / h Z J " - - ~ Т 7 з " ~ 7573 ^ + 

3ř 3 t Эу ду yt By yt ду 

Now let us consider eqn (17) the right side of which is supposed to equal zero. 
For initial and boundary conditions (5), the solution of this equation gives [1] 

j ~zl(1 V T ) 

C l ( z , r ) = - = [ c o - c ( ^ ) ] e - | 2 d ? + c(<p) (18) 
VJT J O 

where the new variables z and r are bound with the variables у and t by the 

subsequent relations 
^2/3 -3 ~ 7/3 / * n \ 

z = r y ; r = -Dht (19) 

On the basis of the solution Ci, it is already easy to calculate the diffusion flow 
and the corresponding current density flowing through the mercury dropping 
electrode and thus to obtain the Ilkovič equation. 

Now let us consider eqn (17) in which we substitute a = 0. The solution is given 
in paper [3] by Levich and leads to a correction of the Ilkovič equation. As evident 
from eqn (17), the correction involves influence of the curvature of the diffusion 
layer and is identical with the correction derived earlier by Koutecký [2], more 
exactly with the first term of this correction. 

Let us solve eqn (17) for a=f=G\ i.e. respecting linear concentration dependence 
of the diffusion coefficient (3). The solution may be performed by the method of 
successive approximations and expressed in the form 

c = d + ck \cv\<cx (20) 

where ck is a correction solution for the function cx given by eqn (18). If we 
substitute from eqn (20) into eqn (17) the solution ck must fulfil the following 
equation 

Э£к_2уЭ£к_ Э2ск 2 D h 3 d у2 Bei 
^ . ^ . ^ L>h ~ 2 — .1/3 ~ Л/3 ~ « 

at 3 t ay ay yt ay yt ay 

for the following initial and boundary conditions 

ck(y, í = 0) = 0 

Ck(y = 0, f) = 0; c(y^>°°, r) = 0 . . . f>0 (22) 

Chcm. zvesti 33 (4) 448—457 (1979) 451 



P. KUBÍČEK 

The terms of littleness of the second and higher orders in eqn (21) have been 
neglected, i.e. 

j ^ _ a C k _ 2 D H 8 £ k 

yr/3 dt yr1/33y ( 2 3 ) 

which is the approximation suggested by Levich [3]. Furthermore, we put 

Ъ2с /дс\2 8 2 d /Э'сЛ2 , „ „ ч 

(see eqns (20) and (17)). 
Let us consider the function cki which is the solution of eqn (21) for a = 0 and 

initial and boundary conditions (22) where we write cki instead of the function c k . 
This function was already presented in paper [3] by Levich and therefore we shall 
not analyze this problem in more detail. 

Provided the function ck2 is the solution of the equation 

Эск2 2уЭс к 2 Э2ск Г 32Ci / Э с Л 2 ] 

at initial and boundary conditions (22) where we write c k 2 instead of c k , the 
solution of inhomogeneous eqn (21) for conditions (23) and a =j= 0 is the function 

ck = cki + c k 2 (26) 

It is, therefore, obvious from these considerations that the generalized theory of 
the Polarographie method respecting linear concentration dependence of the 
diffusion coefficient is reduced to the solution of eqn (25) at conditions (22). If we 
introduce substitution (19) in eqn (25), it may be written in the form 

Зс к 2 Э 2 с к 2 _ Г 3 2 d ( z , r ) /9d(z,T)\ 2 "| 

= a¥(z,r) (27) 

The particular solution of inhomogeneous eqn (27) at initial as well as boundary 
conditions corresponding to zero (22) on an infinite half line is given by the 
following expression [4] 

ck2(z,T) = — 1 = \ \e * ^ + 

- e " ^ } a F(£, x) d? dx (28) 

If we insert the solution cx given by eqn (18) into eqn (27) and express the 
function F(§, x) by means of eqn (28) or eqn (27), we obtain 
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L x3/2 2 V * x'2 + 

X -i 
(29) 

where 

Ki= -—т=[со-с(ф)]2 

2VJT 

2\Лг (30) 

1 2 

K3 = —[Со-С(ф)] 

In polarography we are interested in the current density i flowing through the 
area of the mercury dropping electrode 

i=nFD[c(cp)]^\ | J (31) 
OZ Iг=о oy 

Therefore we shall differentiate the function c k 2 expressed by eqn (28) 

dz lz=o 2vn Jo Jo ( т - х ) 

and insert the function F(£, x) given by eqn (29). Then it holds 

Ц^ =a [Kill + K2I2 + K3I3] (33) 
OZ z=0 

where J,, i = 1, 2, 3 are the following integrals 

1, = ^ - = Г f ^ l ^ ^ e - ^ - ^ e r f - ^ d ^ d « (34) 
2 V J T J 0 Jo ( т - х ) 3 ' 2 * 3 ' 2 2 V X 

' * = 4 = ľ í" —^-тгг Ka e-^'-^d? d«=4= ( 3 5 ) 

2\/лЪ l (r-x)3'2 x3'2 Vr 

h i fr_i_le-Ä^d |dx=^i (36) 
2V^Jo Л) ( т - х ) 3 / 2 х 2 Vr 

Now we are concerned with integral (34) the calculation of which we are going to 
carry out approximately. For this purpose, we express the functions erf z by means 
of a majorant function [7] 
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erfz^l-e~^z (37) 

If we insert from eqn (37) into eqn (34) and take into account integral (35), we 
may write 

i,-/2-/.. (38) 

1 ?2 _^Ü__Ü__L.4 1 f f _ 1 _ J 1 É ^ _ _ Ľ J Ľ 
Í , 1 = T 7 7 = : ľ^i з/2 е 4(т-х) 2к V * V x d S d * 

2\Я Jo Jo (г-х) К 

(39) 

It is easy to integrate double integral (39) with respect to the variable § by using 

substitution 

u= 2 j - x _ g + 1 /rzJL (40) 
2 V W T - K VJT V 2 T - K 

and rearrange it into the form 

Л/л: Vr Jo (2-r j ) L 2 V У/л: ^2-r]) 

x ( i + 1 i ^ ) _ 1 J ^ l d r / = 0 . 2 5 6 - L (41) 
\2 л/лг2-г]/ 2 V j r v 2 - r ? J Vr 

The value of J n was determined by means of a computer. 

If we insert from eqns (41), (38), (36), (35), and (30) into eqn (33), we obtain 

« - Л = [ с о - с ( ф ) 1 4 = { 0 . 2 5 6 [ c o - с ( ф ) ] - с ( Ф ) } (42) 
=o 2 VJT L J V r 

ЭСк2 

Now, it is already possible to calculate the current flowing through the mercury 
dropping electrode. If we take into- account eqns (26) and (20), it will do to 
substitute the solution cx expressed by eqn (18), the solution cki explicitly 
presented in [3], and eqn (42) into eqn (31). The current I flowing through a drop 
is related with the current density / also by the following expression [1] 

J = 4JT a\t)i (43) 

where the drop radius a (t) is given by eqn (11). Provided we replace the variables r 
and z by the variables у and t according to eqn (19) and take into account eqns (9) 
and (3), we may write'for the instantaneous current 
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rr П1/2г1/6 

I«0.732 n F Dl/2m2/3tl/6[c0- c(<p)]\ 1 + 3.9 щ- [1 + ac((p)] + 

+ а{0.182[со-с(ф)] + | с ( ф ) } } } (44) 

| а | с о ^ 0 . 3 

Eqn (44) is the generalized Ilkovič equation which respects linear dependence of 
the diffusion coefficient on concentration of the depolarizer (the third term in 
double parenthesis and the correction ас(ф) in the second term) and the spherical 
diffusion as well (the second term in this parenthesis). By integrating with respect 
to the variable t, we obtain the mean current / from eqn (44) 

I = 0.627 n F Dl

h

/2m2/3t\/6[co- c(cp)]\ 1 + 3.4 1/3' [1 + ac(cp)] + 

+ a{0.182[co-c((p)] + | c ( (p)}} } (45) 

| a | c o ^ 0 . 3 

where tx is the drop time. 
We shall summarize the approximations used for the deduction of the 

generalized Ilkovič equation. Approximation (23) corresponding to the correction 
for spherical diffusion has been discussed in [3] and we shall, therefore, dismiss it. 
From the view-point of the correction respecting the concentration dependence 
D(c) we have used approximation (16) which means that this correction does not 
take into account the influence of the curvature of diffusion layer which itself is 
a correction of littleness of the first order as well as approximation (24) which is 
justifiable solely on the assumption that | c k | ^ C i . Finally, we have approximated 
the function erf z by means of eqn (37). This approximation manifests itself in the 
value of integral I\ (see (34)) which is changed by 15%. The calculations were 
performed by computing integral (32) on a computer for particular values of r. 
Hence, it holds /i = 0.636 т - 1 instead of Ji(approx) = 0.744 r_ 1.This refinement was 
taken into consideration already in the value of the constant 0.182 in eqns (44) and 
(45). 

It is useful to outline a procedure useable for higher values \a\c0 which enables 
us to appreciate the accuracy of the deduced first approximation as regards 
experimental errors for these values. In these cases, a numerical solution of eqn 
(27) would be performed on a computer for particular values of a, c0 and zero 
conditions (22). Then it should be put cx + ck2 instead of the solution d in eqn (27). 
Provided a more accurate analysis would be necessary, a numerical solution of eqn 
(13) involving substitutions (19) should be performed. After further calculations 
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the results of these solutions may be compared with the values calculated from eqn 
(44) or eqn (45). 

Discussion 

In the generalized Ilkovic equation the heterodiffusion coefficient D h appears. 
From the results of measurements obtained with different values c 0 , this equation 
enables us also to determine the coefficient a and thus the real coefficient of 
diffusion according to eqn (3). 

The comparison of eqn (45) with the original corrected Ilkovic equation shows 
that it is the "apparent" coefficient of diffusion Ď which results from this equation. 
For the limiting current it holds c(cp) = 0 and the following relationship between 
apparent diffusion coefficient and heterodiffusion coefficient is valid 

Ö , / 2 ( l + 3 . 4 ; C ö , / 2 ) = D r ( l + 3.4 ^ D J " + 0.182 a c„) (46) 

or 
/ / 1 / 6 \ / tl/6 \ 

Dil + 6.8 -Чтз Ďx,2\ « D J 1 + 6.8 -\n D n
/ 2 + 0.364 a c0) (47) 

The magnitude of the term which in the generalized Ilkovic equation represents the 
influence of concentration dependence of the diffusion coefficient mainly depends 
on character of the depolarizer with respect to properties of the indifferent 
electrolyte, i.e. on the value of a and concentration c 0 used. It should be 
emphasized that the value of the heterodiffusion coefficient D h as well as the value 
of a is really dependent on concentration of the indifferent electrolyte c i n. 
Therefore the values of a and D h necessitate a statement for which concentration 
Cin they have been determined. 

Provided the maximum value of \a \ c 0 equals 0.35 in a concrete case, the value of 
limiting current changes according to eqn (45) by 6.4% while the value of the 
apparent coefficient of diffusion changes according to eqn (47) by about 13%. 
However, it ensues from eqn (3) that the real coefficient of diffusion at concentra
tion Co, i.e. D(co) must differ from the heterodiffusion coefficient already by 35% 
in this case. For higher values of \a\c0 it is convenient to check the correction by 
numerical integration of eqn (27) as stated in the foregoing passage. 

In case the correction for spherical diffusion may be neglected, the relationship 
between Ď and a, D h may be written in the form which is equal for other 
electrochemical methods and their generalized equations 

D « Dh( 1 + const a Co) (48) 

The values of the constant in eqn (48) valid in the presence of indifferent 
electrolyte are given in Table 1. 
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Table 1 

Values of the constant in generalized equations of electrochemical methods 

Generalized equation Constant Ref. 

Cottrell 0.36 [5] 
Sand 0.40 [6] 
Levich 0.53 a > 0 [7] 

0.62 a < 0 
Ilkovič 0.36 

Assuming the diffusion coefficients and valency of positive and negative ions are 
equal [8], the value const = 0.57 results from the generalized Levich equation for 
binary electrolytes. This value is the mean of the values quoted in Table 1 for the 
Levich equation. 

The consequences resulting from the generalized Ilkovič equation will be 
discussed from the view-point of experimental practice in the subsequent paper [9]. 
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