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A generalized RDE theory is presented based on the assumption that the
dependence of diffusion coefficients and viscosity on concentration is linear.
On the basis of the general transport equations of ions, the boundary
conditions of these equations have been determined and simplified transport
equations have been derived. By integrating the equations, the distribution of
the concentration of ions has been calculated, which makes possible to estimate
the values of limiting currents. From the electric field distribution and ion
concentration, the potential and voltametric characteristics of the method may
be derived. In this paper, the limiting current densities of binary electrolytes
are compared with the limiting currents in the solutions containing indifferent
electrolyte. Furthermore, some possible applications of the theory to the
determination of concentration dependence of the diffusion coefficients of
cations and anions from the ratio of current densities at different concen-
trations, the change in ohmic resistance of electrolyte, and the change in
limiting currents due to varying concentration are presented. The theory is
illustrated by numerical calculations.

B pa6oTe npensnoxeHa 06061eHHast Teopus PIID B npegnonoXxeHnu JIHHe -
HOI1 3aBUCUMOCTH K03 HLMeHTOB AU dY3NH U BA3KOCTH OT KOHLEHTPALHH.
Hcxonutest M3 oOLIMX YPaBHEHHH TPAHCIOPTAa MOHOB, ONPENENAIOTCA IPaHUY-
Hble YC/IOBHS 3THX YPAaBHEHMH M BBIBONATCA YNPOLUEHHbIE TPAaHCHOPTHbIE
ypaBHeHHs. MHTErpupoBaHHEM ypaBHEHHM BLIYMCIAETCS pacnpefeieHue KOH-
LEHTpaUHui MOHOB M OTCIOA ONpefeNseTcs 3Ha4YeHHE NpefebHbIX TOKOB. U3
pacnpefeieH|s 3JEKTPUYECKOTO MOJsi M KOHLUEHTPAUuil MOHOB MONYYHTCH
MOTEHUHMAJl U BOJIbTAMETPHYECKHE XapaKTEPHUCTUKHM Metopa. B pa6ore mpo-
BOJMTCS CPaBHEHHE MPEAEbHbIX MIOTHOCTEH TOKA B Clyyae JBOHHBIX 3JIeK-
TPOJIMTOB C TMPpPEAEHbHbIMM TOKaMM W PpacTBOPOB, COAEpXalllMX HWHAH-
¢bepeHTHbIi 31eKTPONHUT. [lanee npUBOAATCA BO3MOXHbIE MPUMEHEHUS TEOPUH
NpH onpefeseHMd KOHUEHTPALMOHHBIX 3aBUCMMOCTEH KO3 duuueHTOB nud-
(y3uM KaTHOHOB M AHMOHOB M3 OTHOLUEHHMS MUIOTHOCTEH TOKa MpPU Pa3HbIX
KOHLEHTPaLUAX, K3MEHEHHS1 OMMYECKOTrO CONPOTHBIIEHUS 3JIEKTPOJIUTA U Npe-
AEIbHbIX TOKOB NMPH HW3MEHEHMH KOHUEHTpauuu. Teopus ummocTpUpyercs
uMpOBLIMU pacyeTaMHu.
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The theory of the rotating disc method for dissolving disc electrode and
electrochemical variants of the method in solutions with indifferent electrolyte and
in binary electrolytes was developed by Levich [1]. A full survey of the applications
of this method in electrochemistry has been given in [2]. The Levich theory is based
on the assumption that the diffusion coefficient is independent of concentration. In
[3], this theory is generalized for ionic melts and solutions with indifferent
electrolyte supposing that the diffusion coefficient and viscosity depend on
concentration linearly and the Einstein—Stockes relationship between diffusion
coefficient and viscosity is taken into account. The presence of indifferent
electrolyte allowed to neglect the magnitude of migration current with respect to
diffusion current.

In this paper, a. generalized theory of the rotating disc method (RDE) is
presented for the fundamental case, i.e. binary electrolytes. A linear dependence of
the diffusion coefficients of cations and anions and of viscosity on the concentration
of ions is assumed again. Since, in this case, the migration flow due to the electric
field in electrolyte must not be neglected with respect to the diffusion and
convection flow, the solution of this problem is much more complicated.

Flow in a binary electrolyte and derivation of the transport equations for D = D(c)

Let us consider the ions of both kinds (positive and negative) in a binary
electrolyte. The transport of ions will take place owing to convection, diffusion of
the ions to electrode, and migration in the electric field. Hence, it holds for the total
flow j; of the ions of the i-th kind [1]

D, zE F

ji=cv—D, grad c; + RT c; (1)

where ¢, z;, D;, E, F, R, T, and v are concentration of the ions of the i-th kind,
valence of these ions, diffusion coefficient, intensity of electric field, Faraday
charge, universal gas constant, temperature, and velocity of the motion of
electrolyte, respectively. If we consider the law of mass conservation, the time
change of the concentration will be described by the equation

¢

—=—divj 2

Y j (2)
Supposing the electroneutrality of solution, the following relation will be fulfilled in
a binary electrolyte

21 €6—2,6,=0 3)

Instead of the concentrations ¢, and c,, the normal concentration ¢ may be
introduced
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By inserting from eqns (4) and (1) into eqn (2), we obtain the initial system of
equations

g—t+vgradc—d1v (D, grad c)+ Fle (¢ D, E) (&)
= E) (6)

where the signs in front of the last terms on the right side of eqns (5) and (6) have
been chosen in such a way that F represents the absolute value of the charge.
First of all, we subtract eqn (6) from eqn (5)

div (D, grad ¢) —div (D, grad c) + [z1 div (¢ D, E)+ 2z, div (c D, E)]=0
(7)

and subsequently we shall integrate eqn (7). On integration, it may be written

(D,—Dy)gradc+—=(z,D,+z.D,)c E=P €))

RT (Z‘

where P is a vector which should be determined by further calculations and for
which it holds div P =0.
Now, we are going to pay attention to the calculation of the electric current
density i, which is evidently given by the expression
ii=Fzj 9)

where the value of j; may be calculated from eqn (1). Thus, it holds

2
l,=Dlelgradc.+?%éc,E+Fz.c,v (10)
2
i2= _DzFZZgradC2+—lﬂC2E_F22C2V (11)

RT

The choice of signs is determined by defining the positive orientation of the current
vector from the negative electrode and by respecting the signs of charges [1]. The
vector of the total current density i is given by the sum of the current densities of
positive and negative ions and will be expressed by the equation

i=i,+i2=[(D1 Dz)gradc-f- (z,D +z,D 2)CE]F2122 (12)
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For the solution of eqn (12) we used eqns (10), (11), and (4). If we compare eqn
(12) to eqn (8), we obtain for the vector P
__
F 2122

(13)

By using eqns (8) and (13), the distribution of the electric field intensity in
solution may be determined
RT i (D,—D,)RT gradc

E= —i—
F¥(z,Di+2z,D,) 2, 2; ¢ F(z,D,+z,D;) ¢ (14)

If we substitute in eqn (14)
RT _ (D.=Dj,)RT

A= : G= 1
F2(21 D,+z, Dz) 2,122 G F(21 D,+2z, Dz) ( 5)
it may be written
c c

For the solution of eqns (5) and (6), the value of div (¢ D; E) is to be
determined. The divergence of the product of scalar f and vector b obeys the
following expression

div(f b)=fdivb+b grad f (17)
By the use of eqns (17) and (16), we obtain
div (¢ D; E)=i grad (A D;)— G D, Ac —grad c grad (G D,) (18)

When deriving eqn (18), we must realize that div i =0 (see eqn (13) and the text
following eqn (8)).
If we insert from expression (18) into eqns (5) and (6), we obtain

%+v grad ¢ =D, Ac +grad D, grad c+%:[i grad (A D))+

—G D, Ac —grad c grad (G D,)] (19)
%+ v grad c =D, Ac +grad D, grad ¢ 2 F[i grad (A D,)+
ot RT

—G D, Ac —grad ¢ grad (G D,)] (20)

Eqgns (19) and (20) are the starting transport equations which give the
dependence of normal concentration on time and coordinates, and involve the
diffusion of ions, the convection, and the migration of ions due to the electric field
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in solution. The last component, as we shall see later, will be also respected in
boundary conditions. It is obvious that eqns (19) and (20) enable us to study the
concentration dependence of the coefficients of diffusion D,=D,(c,) and D,=
= D,(c,). Moreover, we must take into consideration that the right sides of eqns
(19) and (20) are equal and eqns (19) and (20) are, therefore, indentical. The
equality of the right sides is given by the condition (7) which yields expression (14)
for the electric field intensity E in solution.

Simplification of the transport equations

A substantial simplification of the transport equations may be achieved for
stationary conditions which come into consideration in voltametry with RDE, i.e.
at 9c/3t=0. Furthermore, we shall assume a linear dependence of diffusion
coefficients on concentration, which is an approximation satisfactory in a great
number of experimental cases. The concentration involved in the coefficients of
diffusion may be approximately expressed by means of a known convenient
function c¢,. Thus, with respect to eqn (4), it may be written

D(c)=D,(14+a,z,¢c)=D(1+a,z,¢) 21)
DZ(CZ)=DZh (1 +a,z, C)’""Dzh (1+az zlcl) (22)

where D,, and D,, are the heterodiffusion coefficients of positive and negative
ions, a; and a, are coefficients characterizing the concentration dependence of
diffusion coefficients, and ¢, is a function characterizing the distribution of ion
concentration provided the diffusion coefficients are independent of concentration,
i.e. Di(c,)=D,, and D,(c,)=D,,. It will appear later that the function ¢; must
satisfy eqn (36).

In relationships (21) and (22) the linear dependence of diffusion coefficients on
concentration has been approximately expressed by means of the concentration c;.
Let us consider this approximation more minutely. The solution of eqns (19) and
(20) may be expressed in the form of the following expansion

c=c+(a, a,+a, ) eyt (ay al+ap a; a,+as; ad) e+ (23)

where a;; are constants.

By substituting from eqn (23) into eqns (21) and (22), we can state that we have
neglected the terms o, a7 @ (n=2, m=1, p =1) in the approximate expression
of diffusion coefficients, i.e. the terms of the littleness of the second and higher
orders. In an approximate solution of this problem we are entitled to do that
simplification provided it holds

la;] co€l, i=1,2 . (24)
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where c, is the concentration of electrolyte in such a distance from rotating
electrode which is much larger than the thickness of diffusion layer.

By using eqns (21), (22), and (15), the functions A D;, G D,, D,(1—-z F G/
/RT), i=1, 2, in transport eqns (19) and (20) may be expressed as follows

F 1 Deff [ Deﬁ'
—AD=—"—— +
RT = F ZZ(ZI +Zz) D,, D, z, + 23 (al 2
—a;2) Cl]=011(1+a1 qu cr) (25)
2, F 1 D [ Dy 2z ]_
- e Zet X (s —ap2) 6=
RTA D,= F z,(z,+22) D D, zl+Zz( tes 221) €
= Qu(l — Q2412 Cl) (26)
Z_|__I_: 21 th D,, { [ D« _ ] }_
RT GD,= z.+2, Do D1+ D,.—D,, (nzz—az)taz,| o=
=Qu(1+a, gz cy) (27)
L FG _ 22 Dn, D, { [ Dy ] }_
o ] =~ 2 D1+ | =— = +a,z,| (=
RT 2 Z1+2; D,, i D\,—D,, (al e ZI) AR A

= sz(l +a; gz cr) (28)

o F 2z, D.
D]( RT )zDeﬁ{1+[a1 Zz—Zl_;ZZBZ—:(al Z2—a2z1):| Cl}=

=D (1+a, qs ¢ (29)

D,
Dz( 2 F >zDeﬁ{1+[azZ1+L'_"(a1 0 Zl)] Cl}=

RT 2, + 2, Dy,
=D (1+a:qs:¢1) (30)
De“=D1thh (Zx+22) (31)

21 Dy +2, Dy,

In eqns (25—30) we omitted the terms of littleness of the second and higher
orders again, in particular, we used the approximation
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1

————=1-—constq ¢ 32
1+const a, ¢; ! (32)

Let us insert from eqns (25—30) into eqns (19) and (20). However, we express
the function grad (D; A) by means of the concentration ¢ and not by means of the
first approximation c, (see relationships (21) and (22)), which simplifies integra-
tion of the equations, as it will be demonstrated later

"4 grad c=D, Ac + 01{431Deﬁ c;Ac +grad ¢ [i g, Qu+

+ (22 D1 — Q21 g21) grad cl]} (33)
vgrad c=D Ac+a, {qs; Dy ¢, Ac +grad c [i g, Q12+
+ (21 Don+ Q2 q2,) grad ¢,]} (34)

By direct substitution of the expressions ¢;, Q;;, and g;; from eqns (25—31) into
the right sides of eqns (33) and (34), it may be demonstrated that the right sides of
these simplified transport equations are equal and thus transport eqns (33) and
(34) are identical again. Hence, eqns (33) and (34) may be written in the form

v grad c =D Ac + D X, ¢;. Ac +grad ¢ (X, + X; grad c;) (35

where the quantities X, X, and X; may be obtained by comparing eqn (35) with
eqn (34) or (33). Therefore eqn (35) is a simplified transport equation which
describes the stationary case of diffusion, convection, and migration of ions in
a binary electrolyte provided the diffusion coefficients are linear functions of
concentration. The terms of littleness of the second and higher orders have been
omitted in the derivation. If the diffusion coefficients are independent of concen-
tration, i.e. a;=a,=0, eqn (35) turns into the known equation of convective
diffusion for binary electrolytes [1]

v grad ;=D Ac, (36)
where D, is given again by eqn (31).

Derivation of generalized boundary conditions

For the determination of boundary conditions, we shall assume that, for instance,
the cathode is a rotating disc, whereas the anode possesses the form of a planar
electrode and is in the distance / from the cathode. We shall introduce a coordinate
axis y passing through the axis of the rotating disc with the origin on its surface and
directed from the disc to the planar electrode (anode). The boundary conditions
valid for RDE can be derived from the following reasoning: At the anode, i.e. for
y =1, the normal concentration must be equal to

cy=h=c (37)
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On the surface of the disc electrode (cathode) the ions of the first kind are
discharged while the ions of the second kind are not discharged and, for this reason,
the electric current density which is transferred by these ions must equal zero at the
rotating electrode [1]

dc, D, F*z2

izn(y=0)=—Dzez§n— y=o+TCZ(y=O)En(y=O)=O (38)
Eqn (38) may be derived from eqn (11) if we realize that the normal component
v, of the motion of liquid equals zero at the surface of the disc electrode. The index
“n” denotes the normal components in eqn (38).
In order to calculate the boundary conditions for solving transport eqn (35) from
condition (38) we must, first of all, express the electric field intensity E. Therefore,
we insert from eqns (21) and (22) into eqn (14) and obtain

g__RT 1 <1_Wi>_RT D,,— D, [gradc
2
C

= — +
F?2, 2,2 Din+2, Dy, F z,D,,+ 2z, Dy, c
+ (W, —W,) grad c] (39)
where
a,z,Dyp—a,z, D Z; zo(a; Dy + a, D,y)
w,=%1220n 221 2h; _Z120a U 2 o, 40
! D,,—D,, 2 21 Dy + 2, Dy, ( )

It ensues from the theory of rotating disc method developed by Levich [1] that
the concentration ¢ is dependent only on the distance y from the surface of rotating
electrode. In this case, we may express the solution of transport eqn (35) in the
form (see later)

cy)=a(a)J(y, ) +a, (41)

where a, and a, are constants, J(y, &) is the investigated function, and the
parameter ¢; reflects the dependence of the diffusion coefficients on concentration.
If we substitute from eqns (39) and (41) into condition (38), we obtain

dJ(y, o) _ i

dy y=0 FZ1(21+7-2)D1n[ @ 22 €y J

a,(a)

I
~F zl(zl +Zz) D,,

[1-a, z; c(y =0)] (42)

where c(y) is the known solution of equation of diffusion (36) valid for
concentration independent diffusion coefficients. The approximation in eqn (42),
i.e. the substitution of the known function value ¢,(y =0) for c(y =0) represents
neglecting the terms of littleness of the second and higher orders (23).

If it holds J(y —!, a,;)—0 (see later), eqns (41) and (37) give
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a;=¢o (43)

From boundary conditions (37) and (38) which are valid for the electrochemical
problem solved, we obtain generalized boundary conditions (42) and (43) or (37)
for transport eqn (35). The solution of this transport equation, as we shall
demonstrate later, may be written in the form of eqn (41).

Survey of the resulting relationships of RDE for concentration
independent diffusion coefficients

The solution of transport eqn (35) with boundary conditions (37) and (42)
enables us to respect the linear dependence of diffusion coefficients on concentra-
tion. In order to carry out this solution, we must take into consideration and apply
the results derived by Levich for concentration independent diffusion coefficients
[1]. In this part, we give a survey of these relationships with respect to their
application in our calculations. The concentration independence of diffusion
coefficients in the mentioned relationships is denoted by the symbol a; =0.

According to [1], the solution of the equation of diffusion (36) is as follows

et a=0)=c)=afa=0 [ ew[ o= [Tvon dv|ay e @)

For the velocity of liquid flow v in the direction y, it holds

3
V()= —Aoy*; Ac=0511; y<6<s (45)

0

where w is the angular velocity of rotating disc, v, is the kinematic viscosity of
solution, & is the diffusion boundary layer, and &, stands for the hydrodynamic
boundary layer (the Prandtl layer) the magnitude of which is

364/
80=3.61/~" (46)

If we insert the velocity v(y) from eqn (45) into solution (44), we obtain

)= 4= (1B y o)~ 1,(B y)] (47)
where
J.(B y)= f " e dus J,(B y—>w)=0.8934 (48)
and
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_2 ( vo )'”_ Vo
B—(so D.. =0.555 D5y (49)

The value of D, is given by eqn (31) again. For the boundary diffusion layer
at concentration independent diffusion coefficients the following equation is valid

Ji(B y—x) D vy
S(a,=0)== =1.61 50
( ) B Vo (50)

Then, the value of concentration at the surface of disc is
ci(y=0)=co—a;(a;=0) 6(a; =0) (51)

The coefficient a,(c; =0) is to be calculated from boundary condition (38) for
a,=0

i(o;=0)

a,(a; =O)=m (52)
If we insert from eqns (50) and (51) into solution (47), we can write
e(0)=24%=9 1.8 y)+c(y=0) (53)
or
) =leo=cily =] 7o 2s +(y=0) (54)

In further calculation, Levich [1] derived a relationship between the voltage V
applied to electrodes and passing current density i(a; =0). He calculated the
potential @ by integrating the distribution of the electric field intensity E given by
eqn (39) for a, =0.

Then, the current density i(a; =0) at concentration independent diffusion
coefficients is described by the equation

Ha=0) _a(@=0)8(=0)_; cly=0)
i(a;=0) " é - Co

(35)

‘Furthermore, the subsequent relation between current density i(a; =0) and the
voltage V applied to the cathode has been derived

F z,2,

i(a=0)=ir(a,=0) [1-¢ Fa "=

(V= A@onen(0: =0) } (56)

where i, (o; =0) is the limiting current density and A@,,.(a; =0) is the potential
drop due to the ohmic resistance of solution. For our conditions, the rotating disc
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was cathode. Therefore, we may write V <0, A@q.»<0. Thus, it holds for ‘the
limiting current density

F Zl(zl +Zz) Dy, ¢

c®Vo (57
8(a; =0)

ia=0= T61 D% vi"

=F Z1 Dlh (l + )
ci”=2z, ¢, (see eqn (4)).

We shall use eqns (44—57) for the solution of our generalized problem.

Integration of the transport equation at D = D(c) and v =v(c)

In the RDE method, the concentration c is solely a function of the coordinate y.
In this sense, we may transcribe transport eqn (35)

dc d’c d’c dc d
v(y) (yY) D, d(f)“'Deff Xiay) —3~ (y) [X2+X3 C;;Y)] Cc'fvy)
(58)
where
Xi=a,4:1=0,q%; X;=ia;q, Qu=10;q Q.2
X;=0,2, D=0 Q31 §2:=0, 2, Dy + 03 Q2 G2z (59)

while the values of g;; and Q;; are given by eqns (25—30) and c,(y) is defined by
eqn (54). The equalities in relationships (59) may be tested by direct substitution.
We introduce the following common substitution into eqn (58)

() =202 ()=S0 (60)

On transcribing and rearranging, we obtain

_ dei(y)
T i b v I fon+
() Dull+X, ()]  Dul"Y

-[xz+x3 ‘%”—)]} [1—X, ()] (61)

We substitute from expression (45) which involves the kinematic viscosity for
the velocity v(y) into eqn (61). As the kinematic viscosity v is also a function of
concentration, we may use the linear approximation again. Hence, it follows

vic)=vo(l+yc)=v(l+yz,¢); yc, <l (62)
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where v, is the kinematic viscosity at c,— 0 and y is a constant characterizing the
linear dependence of kinematic viscosity on concentration. In eqn (62) we have
used expression (4). Hence, eqn (45) gives the following relation for the velocity

v(y)
1 2
v(y)z—Ao[l—ivzz c.(y)]y (63)

Instead of the concentration ¢, we have inserted the function ¢, into eqn (63)
(see (54)), i.e. we neglected the terms of littleness of the second and higher orders.
If we insert v(y) from eqn (63) into eqn (61), we obtain

fo)_ 1
f(y) Dy

In rearranging eqn (64), we neglected the terms of littleness of the second and
higher orders again. The integral of eqn (64) must be

d
[A()yz_Ao (Xl+2 Y Zz) ay) y’+ X+ X, C(;S))] (64)

f(y) = const, exp — 1

eff

A 1
{ Sy -Adxi+3vz)-

. f()’ a(y)y?dy + X,y + Xa[e(y) +ely = 0)]} =

— const, exp~ [%i" y3+q'7(y)] (65)
where
o= At (xi+3va) [ a0y [+
~ciy=0)] (66)

According to [2], we shall write the relationship for the integral in (66) by
substituting from relation (54) for c,(y)

f:cx(y’)y’zdy’—WI J(By)ydy' +
1 ci(y=0)
taly= 0)3 333{J(By—>°°)

(B 1BH-2i@ni@neer]ray=0 By} ©)

where B is defined by expression (49). For further modifications, we must take
into account that it holds (see eqns (49) and (45))
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Ao

3 Dy

Respecting expressions (60), we shall integrate eqn (65). In the choice of the

limits of integration, we shall respect the configuration described earlier and
perform the integration analogously as in expression (44)

=B’ (68)

c(y) =const, jy exp—[(B y')>+@(y')] dy' +const, (69)
{

The function @(y), when compared with (B y)? contains only the terms of
littleness of the first order. In the function @(y), there are parameters a;, D, , z; and
the constant y relative to kinematic viscosity which may be found experimentally.
For practice, it is of good use if the constants containing these parameters can be
expressed explicitly and not only as coefficients in integrals. Therefore, we express
the function under integral sign in eqn (69) by means of the first two terms of the
Taylor series

b4 y
c(y)=const, U’ e B dy’ —f e Y’ @(y") dy’] + const, (70)
1 ]
Then we determine the values of const, and const, from boundary conditions
(42) and (43). If we compare solution (69) or (70) with expression (41 ), we reveal
the following relations

Jiy=1l,)=0 = const,=c,
(71)
dj(y’ai)
dy

=1 = const,=a,(a;)
y=0
where the value of a,(¢;) is given by expression (42).

If we insert from expressions (71), (66), and (67) into eqn (70), we obtain the
solution for c(y)

Bl

‘X2 B
Dcf[B By

ue™du+

c=co-aa) 51

By

e’ du—{
X; co—c(y=0) (®'
D Jn(B y—>®) By

co—c(y=0) (B!
JI(B y_>°°) By

Ji(u)e™ du+

“<X1+%Y22> [u3J,(u)—%J,(u)+

1 .. - 1 B! 3
squeferau- (Xt y o) av=0) [ we all (@2
By

where u =B y, J,(B y — »)=0.8934 (see eqn (48)) while ¢,(y =0), a,(¢;), and X,
(=1, 2, 3) are given by expressions (51), (42), and (59), respectively.
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Now, we shall calculate the concentration at the surface of rotating disc, i.e.
c(y =0) which is of fundamental importance for the derivation of the final
relationships provided by this method. As the thickness of the diffusion layer 6 is
considerably smaller than the distance / between the surface of rotating disc and
the planar electrode and the integrals in eqns (72) converge rapidly, we may write
according to (50) B | =0.893 /6 — . The values of integrals in solution (72)
were found by means of a computer. Some of these integrals may be expressed by I"
function [1]

f ue™ du=0.4514; f J(u) e™ du=0.3987;
0 ()
f ue ' du=0.2843; f wJ,(u) e du=0.2277;
0 0
f u’e™ du=02976; J,(»)= f e™ du=0.8934;
0 o
I 1 ) Y
u J,(u)—gfl(u)+§ue “| e™ du=0.1896 (73)
0
On the basis of relations (72), (73), and (50), the concentration at the surface of

rotating disc may be expressed by the equation

X, 6(a; =0) +

c(y=0,Bl—>o)=c,—a,(a;) §(a;=0) {1——0.5655 D
eff

- [0.4995 Xs 02375 (X, Ly zz)] [co—ci(y =0)]+
Delf 2
+0.3331 <X, +% Y z2> aly = 0)} (74)

where 6(a; =0) is the thickness of diffusion layer for concentration independent
diffusion coefficients (see (50)).
Hence, eqn (74) may be written in the form

c(y=0)=co—a(a;) 6(cx;) (75)

which is formally identical with eqn (51) valid for a; =0. According to eqns (74)
and (75), the thickness of the diffusion layer 6(a;) at concentration dependent
diffusion coefficients obeys the following equation

6(a)=6(0;=0) [1-&(as, zi, Din, v)] (76)

where the function (1 —§) is given by the expression in composite bracket on the
right side of eqn (74).
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Now, let us calculate the coefficients X 1» X2, and X; in eqn (74). We shall use
expressions (59) and (25—31) for this calculation. We obtain

D eff 1

_ _ L 2 3

XI—D”.DZth'*‘Zz (a, 23 Dyt a, 23 Dyy) (77)
_i a1 2,—03 2,

XZ-FDIh D2h (Zl D|h+22 Dzh)z (78)

Xs Do 215 00 By 3o, D) (79)

Dc" D,,D,,z,+z,

We substitute the current i(a; = 0) from expressions (56) and (57) into X, . If the
rotating electrode is a cathode, we obtain

X,8(2=0)__z, Du
D« 211t 2, Dy,

(a1 2;—a, 21) Co

F
[1 e RT3 (Vo =0) ] _

= Z‘ % - i
_z,+ZzD2h(alzz a, z,) ¢o L(a; =0) (80)

where L(a; =0) stands for the expression in square bracket in eqn (80) and
L(a;=0)—1 means that the passing current approaches the limiting current
density i, , i.e. the current remains practically constant with increasing voltage V
On the basis of expressions (74—80), the thickness of diffusion layer d(a;) at
concentration dependent diffusion coefficients is expressed by the equation

8(a;)=6(a;=0) {{1 0.5655 —— + ID)e" (o, z,—a, z,) ¢y L(a; =0) +
21 T3 Dy
D 2122
{04995DlhD2hzl+ZZ( D’h+a2D2h)

—0.2375 [—Df"— L (a, 23Dy, +a, 2 D )+l z]}[c —c(y=0)]+
. DDz, +2, 122 Doy 221 D 2Y 2 0 iy
+03331[—D— (a, 23Dy + 0,23 D )+1yz]c(y=0)

D.. D, 2.+ 122 Dy 221 M) T3 2| C1

(81)

where &(a; =0) is given by expression (50), L(a; =0) may be determined by
means of expression (80), and c¢,(y =0) is defined by expression (51).
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Calculation of the limiting current density for D = D(c) and v =v(c)

On the basis of the known thickness of the concentration dependent diffusion
layer 6(a;) given by expression (81) and the value of a,(a;) given by expression
(42) and by the use of expression (75), the limiting current < -nsity i, may be
immediately determined. For this purpose, the calculation of tI potential in an
arbitrary point of electrolyte is not inevitable, i.e. it is not necessary to carry out the
integration of eqn (39) which defines the electric field intensity E in solution at
concentration dependent diffusion coefficients.

The value of limiting current density is proportional to the diffusion flow which
corresponds to the maximum possible value of concentration slope. Thus, accord-
ing to [1], the concentration of ions at the surface of rotating disc cathode equals
zero for limiting current, i.e. c(y =0)=c,(y =0)=0. Hence, it ensues from eqn
(75)

co=a(a;, i) 6la;, c(y =0)=0] (82)

If we insert from expression (42) into eqn (82), we may write for the limiting
current i,

Z =FZ|(Z|+22)D|hC0
o 8[a;, c(y=0)=0]

(83)

or by substituting from expressions (81), (50), and L(a; =0)=1, we obtain

o 2\ Vo {{ { o
w=F 2,00 (1+2) T b 1109655 155

Det (o, 2.~ 2)+0.4995
D2h

D« 2y

D + D') +
DDy z,+ 2, (@ D+ a: Dan)

Dc{f 1
D\, Dy, 25(21 + 25)

—0.2375 [ (a, 23 Do+ a,zi D)+

siylferl=i@=0 a+e (84)

c®=z,¢c, (see eqn (4)).

Thus, we derived the final relationship for the limiting current density i, at
concentration dependent diffusion coefficients, which is represented by the terms
with the coefficients a, and a, while the concentration dependence of viscosity is
represented by the coefficient y. In the whole derivation, we used solely one
approximation by omitting the terms of littleness of the second and higher orders,
ie. a?c,—0, & o co—0, a; ¥y ¢,—0, and the assumption of a linear dependence
of diffusion coefficients and viscosity on concentration (see eqns (21), (22), and
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(62)). The comparison with eqn (57) for i, (a; =0) derived by Levich shows that
the effects of the above-mentioned concentration dependence are described by the
terms in the composite bracket of eqn (84), i.e. by means of the function (1 +¢).
The results derived are valid, if the rotating disc is a cathode.

Comparison of the limiting currents in binary electrolytes
with the limiting currents in solutions containing indifferent electrolyte

The migration current may be neglected with respect to the diffusion current for
ionic melts and the solutions of electroactive substances with indifferent electrolyte
[1]. For these cases, the influence of the linear concentration dependence of
diffusion coefficient on the results obtained by the method of rotating disc was
studied in [3]. In this study, the following relations have been derived for the
limiting current density

(0)
1P D§/31C'61—\C‘,7f6(1 +035ac®+..) a>0
- 0
() A
ii=Fz Dﬁ”fgl—\‘/,?_’,ﬁ(l +04laci®+...) a<0 (85)
A 0

In [3], the Einstein—Stockes relationship between diffusion coefficient and
viscosity was applied to the deduction of eqns (85)

— const

=

and D=D,(1+ac,)
®
from which it follows
v=v(l—ac,) (86)

If we compare expression (86) with expression (62), it must be y = —a.
Now, we shall pay attention to binary electrolytes and consider a special case
when it holds

21=22=2; Dy=Dy,,=D,>D=D,;
a,=a,=0a; ¢,=cC, (87)

We insert from expressions (87) as well as y=—a into eqn (84). On
rearrangement, we may write for binary electrolytes

c® Vo

i =2Fz D {er e (14038 a cf” (88)
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 If we compare the coefficients of the product a ¢{” in expressions (88) and (85),
we see, that 0.38 is the arithmetic mean of the values 0.35 and 0.41. If we take into
consideration the fact that the derivation of eqns (88) and (85) has been quite
different, we must admit that these relationships are in a fairly good agreement.
The coefficient 2 in eqn (88), therefore, characterizes the case of binary electro-
lytes for special conditions (87).

The comparison of eqns (88) and (85) leads to an important conclusion. The
influence of the concentration dependence of diffusion coefficients on the value of
limiting current density is equal for binary electrolytes and the solutions containing
indifferent electrolyte provided the diffusion coefficients and charges of positive
and negative ions of the binary electrolytes are equal, i.e. relationships (87) are
valid.

Dependence of current density on the voltage applied for D = D(c) and v =v(c)

Up to now, we have derived and discussed the generalized relationship for the
limiting current density i, in which the linear dependence of D; and v on
concentration is involved. However, the relationship between current density i and
the voltage V applied to the cathode has not been analyzed thus far.

The potential @ in an arbitrary point of solution is to be obtained by integrating
eqn (39), E = —grad . If we integrate in the interval (/,0), we obtain — as we
shall see later — the voltage drop A@ due to the ohmic resistance of electrolyte.
According to [1], it holds for the potential ¢ and the voltage V applied

RT . c¢(y=0
—-V=—A@p+n; n=ﬁln%
1 0

(89)
'

where 7n is the concentration overvoltage (polarization) at the electrode, i.e.
electromotive force acting in the direction of increasing concentration. The minus
signs in expression (89), i.e. —V, — A@, mean that there is negative voltage on the
cathode. If we integrate eqn (39) in-which we insert the solution c¢(y) from eqn
(41) and the expression a, = ¢, (see eqn (43)) and subsequently use relations (89),
we obtain

RT i 1 [f" dy’
—V=+ 7 +
F*z,2; 2, D\w+2, Do L J, al(ai)J(y , o)+ ¢y

+w21] BT Dy =B {l

—?Zl D,,+2z, Dy,

& RT ln_c(y=0)
F z, Co

n C(ycz 0, (W, — W,)[c(y =0) —c‘,]} +

(90)
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where W, and W, are given by expressions (40). The integral in eqn (90) can be
determined by using the approximation proposed by Levich [1]. We may utilize the
circumstance that the inside integral J(y, a;) rapidly converges in a distance from
the surface of disc which is comparable with the thickness of the diffusion layer 6.
Thus, we integrate in two integration intervals

J‘é(a..) dyl J‘O dyr
! a(a)J(y', o) +co 5(ay) a (o) J(y', ai)+CO~

~_[—(5((1,-)_ o(a) ~_-[_+
~ Co co—a(e) 8(a) ¢,
- o(a,) A 1(:9)
co[l—MJ co c(y=0) (91)
Co

In the first integral, the value of J(y, &) is practically equal to zero while the
second integral signifies J(y — 0, o;) = («;) (see relations (41), (74), and (75)).

If we insert the result from eqn (91) into eqn (90) and respect expression (75),
we may write for W, and W, after rearranging and substituting from relations (40)

Dy (z,+22) RT {lnc(y=0)+

—V=+
FZ](ZlDlh+z2 D2h) Co

_% Dewy ey = }
2, +22 Do (a1 22—z 2))[co—c(y=0)] +
RT
— -W :
ZIZZFZ(Zle"'ZzDZh)Co(l ZCO)I+
RT 6(o;) ; (92)

_21 2> -FQ(ZI D,.+z, D2h) C(y =0)

%12 D
21+ 22 Dy, Dy,

2

(o, Dy, + a, D,,) — see expressions (40) and (31).

The first term in eqn (92) stands for the voltage corresponding to concentration
polarization, the second one corresponds to the voltage drop due to the ohmic
resistance of electrolyte along the length / at constant concentration c,, and the
third one represents the voltage drop due to the ohmic resistance of electrolyte in
the diffusion layer &, i.e. the voltage drop in solution for a concentration growing
from the value ¢, to the value c(y =0).

Eqn (92) characterizes the dependence of the current density i flowing through
solution on the voltage — V applied to the cathode and therefore, it is a general
voltametric characteristic. Contrary to the relationship derived by Levich [1], eqn
(92) respects the linear dependence of the diffusion coefficients of cations and
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anions and of viscosity on concentration. Eqn (92) is too complicated for
a common use because the current density i is also involved in the concentration
c(y=0) (see eqns (75) and (42)) and it holds c(y =0)/co=1—i/i,.

We have already calculated the limiting current density i, . On the basis of eqn
(92), we shall caiculate the relationship between i and V for low current densities
i <i, . First of all, we shall denote the voltage drop due to the ohmic resistance of
electrolyte along the distance ! by the symbol A@,.., in eqn (92) (see the second
term in eqn (92))

RT[1-W, ¢!
2 Z2(21 D,.+z, Dzh) Co

w(a)=w(a; =0)(1—-W;co)

AQorm(a;) =w(0;) i=F2 (93)

where w(q;) is the concentration dependent ohmic resistance of electrolyte.
We shall perform further deduction on the assumption that

i<i,>c(y=0)=c, (94)

Thus, using eqn (75) we may write

1 CO=0_ _a(a) 8(a) (95)

Co Co c(y=0)=co
For the evaluation of the last term in eqn (92), we shall use eqns (42), (71), and
(94)
1 6(e)i 1 6(0:,-)‘=
zFe(y=0) 2, F ¢
_21(21 +Zz) th_‘s(ai) al(ai)

B (1 — Q23 Co) Co c(y=0=cg)
2:(2:+2,) D, c(y=0)
~— | 96
(1 - (11 Zz Co) n CO ( )
If we insert from (96) into (92), we obtain after rearrangement
_ ~RTz+2 <=0
V+w(e)i= F 7.2, (1+%co)ln o (97)
2122 Dy
= D,,+a,D 98
x (z: D+ 25 D2h)2 (a1 oz D) (98)

By inserting from (75) into (97), we may write
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F z,2; .
RO T =V :
+RTzl+:,U % co)l wi(a;)i]

=~]—e (99)

c(y=0)=co

a,(a;) 8(a;)

Co

Moreover, it follows from expressions (81) and (42)

OV el (a = Do 1
8[a;, c(y =0)=c,]=6(a —O){l +0.3331 [Du, Dozt

1
(0,23 Dyt 0y 23 Duw)+5y Zz] Co} =0(a: =0)(1+ ¢ co) (100)

[
alo, c(y=0) = e)~p s p-(-ane) (100

For the derivation of eqn (100) from eqn (81), it holds evidently L(a; =0)=0
assuming [ <€i,.

By inserting from expressions (100) and (101) into the left side of eqn (99), we
obtain

a,(a) 8(ax) i (102)

Co cy=0)=co Lo

lo=1i1(0.=0)[1— (8 —a, z5) co]

where i (a; =0) is given by expression (57) and & by expression (100).

It is worth noticing that the current i, is not equal to the limiting current density
i, given by expression (84). It differs in the terms of littleness of the first order,
which is due to a different influence of the linear concentration dependences of D,
D,, and v at small currents and at the limiting current density.

Assuming it holds

2, Zz

2122 l
21+ 2, RT

|—V+w1|~40
Z:+ 2,

V+wi|<l (103)

the exponential function in expression (99) may be resolved in a series and after
substituting from expression (102) and rearranging, we may write

| zzl‘fi, R—T’L<a e
= 212> F =

\% 1—(x—a; 2.+ %) ¢ - \'% 1
w(a 0O)1—-(x—a,z,+3+W))c, wl=0)1—-W,c,

i<ip; i(a;=0)w(a=0)=0.5; W,c,<02+03

(104)
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where w(a; =0) is defined by expression (93), » and ¢ by expressions (98) and
(100), and W, by expression (40) or (92).

The result involved in expression (104) may be also achieved directly from
expression (92) if we realize that the ohmic resistance of a binary electrolyte, and
thus the voltage drop in it, is much larger than the concentration polarization and
voltage drop in the diffusion layer for i <0.9 i, . It means practically that the second
term in eqn (92) is substantially larger than the sum of the first and third terms.

Thus, we can draw the conclusion that for i <i, the flowing current density is
practically given by the ohmic resistance of electrolyte w(a; =0) (see expression
(104)). 1t is evident that the value of voltage V is accounted from the decomposi-
tion voltage upwards. This conclusion is identical with the result ensuing from the
analysis of the voltametric characteristic derived by Levich [1], i.e. from expression
(92) for a,=a,=y=0. However, the major result consists in the fact that the
correction factor (1 — W, ¢,) could be derived from the generalized theory for
concentration dependent quantities D;(c) and v(c). This factor accounts for the
fact that the current densities i, even at low values of V, may be different more
markedly at varying concentration ¢, than the limiting current densities i,. For
evidence, it is sufficient to compare the quantities W, and & occurring in
expressions (84) and (40) at equal values of a;.

It is convenient to express the dependence of current density on concentration
polarization and voltage drop in the diffusion layer, i.e. on the difference of
potentials (V — @.um)- Then it follows from eqns (99—103)

F .
"”;Z.‘:zéj 27 (@ =0) [V = @uam(@)] [1 = (x—a1 22+ ) c]  (105)

| —a, z,+ 3| co<02+03; i<i.

The influence of the concentration dependence D;(c) and v(c) on current
density is expressed in relation (105) by the member [1 —(x — @, z,+#) ¢o] where
% and ¢ are defined by eqns (98) and (100).

Numerical illustration of the generalized theory

In this part we shall illustrate the generalized theory numerically and graphically
by calculating some voltametric characteristics and limiting current densities for
a binary system with different normal concentrations c,. For this purpose we
introduce for simplification the transformed variables I, a;, a,

C10%i
“Fec,’
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It is obvious from expressions (106) that the quantities a; and (a, c,) are

dimensionless whereas the dimension of I is cms™'.

Let us consider a binary electrolyte with the following parameters
D,.,=3x10"°cm?’s™"; z;=1; aij=-1;
D,,=1x10"°cm®s™; z,=2; a;=—2;

co=10"*valcm™; 6(a;=0)=3x%x10">cm; (107)
i(a;=0)=3x102Acm?>I (a;=0)=3x10°cms™;

y=—a, see eqn (86)

where I, is the limiting current density transformed according to expression (106).

For calculating the shape of voltametric curve on the basis of expressions (106)
and (107) from general eqn (92), it is suited to express some auxiliary functions
with substituted numerical values. The quantity a,(a;) in eqn (42) may be
expressed by means of the function

l
| [ T . B - =
a,(a:) F z,(z:+25) Dn 1+v); a, z;c(y=0) (108)

Expressions (76), (74), (81), and (107) give for the diffusion layer

5(a)=3x10" (1-£); E=(03331-1.0946 Dae, (109

From eqns (108), (107), and (106) we obtain

a(a)_1I
—60—'—9(14-97) (110)

Y= +2<1—Ii) a, ¢, (see eqn (111)).
L.

On the basis of eqns (75), (109), and (110), it holds

cy=0_,_ I _ e i
=133 1-H U+¥)=1-1 (111)

The limiting current density may be determined from eqns (82), (83), (84),
(106), and (107) and on the assumption that y = — @, (see the text following eqn
(86)), we may write

I,=3%10° (1-0.7615) ao co (112)
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We insert from expressions (106—112) into the general form of voltametric
characteristic (92) and substitute RT/F=2.6x 1072 Thus, we obtain

_V=26x 10‘2{0.6 In [1—5;11—03-(1 _g) (1+tp)]—%
(142 agco) I— 31’“0_4 a-5 1} (113)
l—m(l—‘g) (1+II’)

AV=—V+(;o°,,m(a,-)=—V+2.6XIO‘2$(1+2 o o) I (114)

The relationships I =f(— V), I =f[V — @,m(a;)] calculated from expressions
(113) and (114) for a, c,=0, 0.1, 0.2, 0.3 are represented in Figs. 1 and 2. In Fig.
2, the function I occurring in expression (114) is plotted in logarithmic coordina-
tes. For the calculation, the distance between electrodes was chosen tobe / =1 cm.
The curves for a, c,=0 in Figs. 1 and 2 correspond to the voltametric curve
derived by Levich [1]. It is obvious that the slopes of voltametric curves decrease
with increasing values of a, ¢, and the limiting current densities also decrease for
the investigated case of a binary electrolyte characterized by parameters (107). On
the basis of this real example, we can illustrate the accuracy and applicability of the
approximate relationship (105) for i <i,. If we insert from expressions (106) and
(107) into expressions (105), (98), and (100), we obtain

I 1073 B S S S S R S S S S B S S
" I c,=0.1
cm s | I (ocg 6=0) {0 % )

oL
30t =4

I ey €=0.2)
I locy ¢4=0.3)

% ¢=0 i Fig. 1, Voltametric curves I =f(— V) and limit-

ing current densities I, for the electrolyte char-
acterized by parameters (107) at a, ¢,=0, 0.1,
] 0.2,0.3.

1 Transformed current density I is given by ex-
) L pression (106).

0 -5 -10 v Case a, c,= 0 corresponds to the Levich theory.

0.0
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1-10°
cms’'

3.0
20

1.0 —

AN\ L
A\\\
==

05|

0.2 1

1 Il 1 L
0.005 0.01 0.05 0.1 0.5 1V
V-¥,. (o)

Fig. 2. Voltametric curves I =f[V — @ ..(a;)] and limiting current densities I, in logarithmic coordi-
nates for a, c,=0, 0.3.
Binary electrolyte is characterized by parameters (107). I is given by expression (106).
Plots 1 and 2 have been calculated according to approximate expression (115).

~ 1 212> _ _
I 2.6 X102 21+ 2 IL(a‘ _0) [V (pohm(ai)]

[1-(t—a,z.+ ) o] =7.7%10* (1 -0.47 a, co)
[V=@am(a)] I<IL (115)

The relationships I =I[V — @,..(c)] calculated according to approximate ex-
pression (115) are represented in Fig. 2 by curve 1 for a, ¢c,=0 and curve 2 for
a, co=0.3.

For application of the theory, the courses of the functions I(a, ¢,)/I(a, co=0)
calculated from accurate expression (114) or (92) must be, however, compared
with the courses determined by means of approximate expression (115) or (105).
This comparison is represented in Fig. 3 where the voltages V — @ um(a;)=0.005,

Fig. 3. Ratios of transformed current densities
I(a, co)/I(a, co=0) for I/I.=0.1, 0.2 calcula-
ted according to expression (114).

1. Plot calculated according to approximate 0.0 0.1 0.2 0.3
expression (115). oy €y
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0.01 V corresponds to the ratios I/I.=0.1 and 0.2, respectively. The curves
I(a, co)/I(a, co=0) corresponding to the above ratios I/I; were calculated from
expression (114) while curve 1 was calculated by means of approximate expression
(115). It is obvious that the results are in a very good agreement for I/1, <0.1.

Application possibilities of the generalized theory

The study of the concentration relationships of the diffusion coefficients of
cations and anions in binary electrolytes by the method of rotating disc involves
four unknown quantities D,,, a,, D,,, and a,, where index “1” denotes the
diffusion of cations and index “2” the diffusion of anions. The knowledge of the
concentration dependence of viscosity, i.e. of the coefficient y in expression (58) is
assumed. The first series of experiments is to be carried out at a very low
concentration c4(1)— 0 of binary electrolyte. According to the generalized theory
(see expression (57)), when the rotating electrode is the cathode, the ratio D,,/D#
may be determined. In principle, two procedures may be used for the determina-
tion of the heterodiffusion coefficient D,, of anions. For binary electrolytes with
electrochemically active cations and anions, the rotating disc may be used as anode.
The second possibility consists in the determination of the ohmic resistance of
electrolyte w(a; =0) (see expression (93)).

Therefore, if the quantities D,,/D and D,,/D.7 or D,,/D? and w(a; =0) are
known, the values of D,, and D,, may be determined by using the nongeneralized
theory. Provided these values are known, we are able to approach the application
of the generalized theory and determine the values of a, and a,.

For this purpose, the second series of experiments at a concentration c¢,(2)>
>co(1) is to be carried out and the limiting current densities should be determined
experimentally. According to relation (84), the ratio of the limiting currents at
both concentrations must obey the following equation

iL[CO(z)] co(2) {{ { y 21 Dy
g QN 1 —=t — +0.4 W, +
ilcoD)] co(1) 1+40.5655 z2.+2. D, (o, z,—a,z,)+0.4995 W,

D, 1 1
—0.2375 [DTIH)Z,, 7tz (ay 23 Dy+a, 23 Dyy) +§ Y Zz]} 60(2)}}

(116)
co(1)<co(2)

where co(1) and c,(2) are normal concentrations and W, is given by expression
(40). In order to determine the values of a, and a, from the known values of D,,
and D,,, we must get another linearly independent equation in addition to eqn
(116). For this purpose, we may use, for instance, the dependence of the ohmic
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resistance of electrolyte w(q;) on concentration (see (93)). If we experimentally
determine the ratio of current densities at concentrations ¢,(1) and c(2) assuming
a constant voltage V applied, we obtain on the basis of eqns (104) and (40)

ileoD] _eoD) [,
ico@)] " co(2) L~ W2 2] (117)

V=const; co(1)<co(2); |Wal co(2)=<0.3;i<i,.

From eqns (116) and (117), i.e. from the known limiting current densities and
from the known ohmic resistance of electrolyte at two different concentrations, the
quantities a, and a, may be already determined.

Let us consider eqn (105). If we detérmine the ratios of current densities at tfle

concentrations ¢(1) and ¢o(2) assuming a constant’ potential différencc AV =
=V — @om(®;), we may obtain the following equation from expression (105)

ifco@)]_co(2)
ifeoD] ™ eo(1)

V — @am(@) =const; co(1)<co(2); i<0.1i.;
| % —a, z,+ 3] co(2)<0.3

[1-(x—a,z,+3) co(2)] (118)

where » and ¢ are defined by relations (98) and (100).

It is evident that the values of @, and a, may be also obtained from eqns (116)
and (118). A numerical illustration of this relationship for the electrolyte characte-
rized by parameters (107) is given in Fig. 3.

Conclusion I

The generalized theory of the voltametry with RDE which respects the depen-
dence of the diffusion coefficients of cations and anions as well as of viscosity on
concentration is based on the generalized transport equations of ions in a binary
eletrolyte. These transport equations involve the diffusion, convection, and migra-
tion of ions. The very presence of the migration of ions due to the electric field in
solution, which cannot be neglected in binary electrolytes, considerably compli-
cates the solution of- this problem.

This study is based on the premise that a linear dependence of the diffusion
coefficients of cations and anions on concentration may be assumed in the first
approximation for the investigated concentration region of binary electrolyte. This
assumption leads to the simplification of the transport equations, the description of
the electric field intensity for concentration dependent diffusion coefficients, and,
last but not least, to the determination of the generalized boundary conditions for
the transport equations.

Chem. zvesti 33 (1) 23—51 (1979) 49



P. KUBICEK

In subsequent part of this paper where the transport equation is integrated,
another generalization is introduced. It consists in respecting the dependence of
viscosity on the concentration of binary electrolyte. A linear dependence is
assumed again. From the mathematical view-point, only one approximation has
been used in all calculations, i.e. the terms of littleness of the second and higher
orders have been neglected. From this point of view, the validity of results is
limited. The final relationships can be used if the magnitude of the terms of
littleness of the first order (i.e. members with q; c,) is less than 0.2 —-0.3.

The integration of the transport equation leads to the determination of the
concentration distribution and thus to the calculation of the concentration at RDE.
In this way, it is possible to determine the generalized relationship for limiting
current density which respects the concentration dependence of the diffusion
coefficients and viscosity.

In order to estimate the current densities which are smaller than the limiting
current density we should derive the generalized form of voltametric curve. For this
aim, we must calculate the potential from the electric field intensity in electrolyte
and the value of the applied voltage as a function of current density. In all
components of this potential, the members respecting the concentration depen-
dence of the diffusion coefficients appear, i.e. the generalized relationship for the
ohmic resistance of electrolyte, etc. The generalized theory has been elaborated for
the case when RDE is cathode and the valence of ions is equal to the number of the
electrons exchanged. The relationships derived by Levich represent the limiting
case in this theory and are valid for ‘@ Co—0.

On the basis of theoretical analysis we have come to these principal conclusions :

The theory enables us to compare the limiting currents in binary electrolytes with
the limiting currents in solutions with indifferent electrolyte. It appears that the
influence of the concentration dependence of the diffusion coefficients on the value
of the limiting current density is equal for binary electrolytes and the solutions of
electroactive particles with indifferent electrolyte provided the diffusion coeffici-
ents and charges of positive and negative ions in binary electrolytes are equal.

If we use the experimental data obtained at very low concentrations for the
evaluation of the heterodiffusion coefficients of cations and anions according to the
relationships derived by Levich, the generalized theory also enables us to deter-
mine the coefficients a, and a, which characterize the linear dependence of the
diffusion coefficients on concentration. For this purpose, the ratios of the limiting
current densities and the ratios of the ohmic resistances of electrolyte must be
experimentally ascertained for different concentrations. It is also possible to use the
ratio of current densities which are substantially smaller than the limiting current
density, i.e. to employ the beginning of voltametric curve.

Finally, the theory put forward enabled us, by both deductions and final
relationships, to investigate deeper the processes occurring in a binary electrolyte
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at rotating electrode from the view-point of their dependence on concentration.

In conclusion, the influence of corrections and boundary effects on the results
presented must be taken into consideration. Gregory and Riddiford [4] took into
account further members of the series expressing the velocity v(y) (see expression
(45)) and came to a correction which increases the diffusion flow at the electrode
by about 3—5%. On the contrary, other phenomena, e.g. the boundary effect
(position of the disc in socket) reduce the diffusion flow and this correction is
approximately equal to that one introduced by Riddiford. Therefore, the correc-
tions compensate one another for a great part [1].

The mathematical relationships derived in this paper respect the linear concen-
tration dependence of the diffusion coefficients and are valid if the relative
magnitude of the expressions with a; ¢, is smaller or equal to 20—30%. The values
of a; are given merely by the character of ions in a binary electrolyte and, for
certain electrolytes, the phenomena due to the concentration dependence of
diffusion can several times exceed the above-mentioned corrections.

The region of validity of linear relations (21) and (22) for the diffusion
coefficients may be experimentally verified for a given electrolyte by using eqn
(84). The limiting current densities i, ought to increase linearly with concentration
(see eqn (&4) or in a special case eqn (88)).
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