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The mathematic and thermodynamic analysis of the course of liquidus and
solidus curves in binary systems of the 2nd kind (the systems formed by
components M A, —N,B,) was carried out. The existence of unlimited solid
solutions was assumed. The activities of components of the system were
estimated using the Haase relations. The limit values of slopes of the tangents
to liquidus and solidus curves at the melting points of pure components as well
as the general character of these systems were determined. The course of
liquidus and solidus curves is practically the same regardless of that the activity
is expressed by means of the Haase or Temkin relationships. However, utilizing
Haase’s approach the mathematical expressions are substantially simpler.

BbINOJIHEH MaTEMATHYECKUA U TEPMOJMHAMUYECKUH aHANN3 XOfa KPUBbIX
JIMKBUJlyCA M coJiMayca B OMHapHbIX CHUCTEMax 2-ro popa, oO6pa3oBaHHBIX
komnonentamu  tina M A —NB. [Ilpeanojaranocs cyniecTBoBaHue
HEOrPAHMYEHHBIX TBEPAbIX pacTBOPOB B 3TOH cucTeMe. AKTUBHOCTH
KOMIIOHEHTOB CHUCTEMbI BbIpaXKeHbl [OCPEACTBOM COOTHoleHHus ['aa3se.
OnpepesieHbl  npefesibHble 3HAYEHHS HAKJIOHOB KAacaTENbHBbIX KPHMBBIX
JIMKBHJIyCA M COJIMIyCa B TOYKAX MJIABJICHUS YMCTHIX KOMIIOHEHTOB, a TaKXKe
oOumil xapaktep cucTeM. X0 KPHUBBIX JIMKBHAYCA W COJIMAYCa MOJIy4YaeTcs
MPAaKTUYECKH OJMHAKOBBIA, O€3pa3/IMYHO OT HCIOJb30BAHUA COOTHOLUEHHUS
['aaze unu TemkuHa. PacueTsl cTaHOBATCS, OQHAKO, ropasfo MpoLLE B ciyvae
cooTHouenus: [aaze.

In the preceding papers [1—4] the analysis of the course of liquidus and solidus
curves in binary systems with a complete series of solid and liquid solutions has
been presented. The functional relationship between activity and composition has
been expressed by classical relation a; =x;, by relation following from Temkin’s
model of ideal ionic solution [5], and by the universal relationship [6].
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APPLICATION OF THE HAASE RELATIONSHIP

In this work a similar procedure as in the quoted papers is applied but the activity
is calculated using Haase’s approach [7]. The analysis is based on the concepts of
‘“‘characteristic equation” and ‘‘equation of extremum’ which have been defined in
[2, 3]. The systems of the type H/K, K/H, and H/H (see list of symbols) are
analyzed. For each type the Haase functional relationship between activity and
composition is given and the characteristic equation of liquidus and solidus curve,
respectively, is derived. In the cases H/K and K/H the equation for extremum is
derived as well. Further, the limit values of slopes of tangents at the melting points
of pure components are calculated. The results obtained in this work, based on
Haase’s relationships, are compared with those following from an analysis based on
Temkin’s model [2]. This comparison results in a recommendation for using one of
these models in research practice.

With respect to the extent of calculations only results of the mathematical analysis are
presented (Tables 1—3). An example of the mathematic procedure used has been published
in [1]. (It has been applied to the system U/K.) From this work it follows that the results ob-
tained using both the Haase and Temkin model are very similar, which is illustrated in
Figs. 1 and 2. Here the courses of liquidus and solidus curves calculated according to both

Table 1

System M A,—N,B, without common ion, type H/K
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Characteristic equation of liquidus curve
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Table 2
System M, A, — N,B, without common ion, type K/H

. 5_( + )n+q[ b :lp+q
a,=x,;, a=(ptq r+t+(p+q—r—t)XT

‘ 1—xt r+t
1 . s r+t L
a2—1 X, a; (r+t) l:r+t+(p+q—‘r—t)x;]

Characteristic equation of solidus curve
Q(+t)y"[r+t+(p+q—r—OxiPP (1 —x})"+
+Mp+q)r+t+(p+q—r—oxi] ") —[r+t+(pFq-—r—t)xP =0
lim dT/dx|= —w; lim dT/dx!= +

T—T] TsTs

. . r+t . . . p+
lim dT/dx}= ~ = R(TH: TlirrrlidT/dx}=2HC;R(T§)2

Equation for extremum

[r+t+(p+q—r—t)x]r+((l _x)l—r—( {’:r+t+(p+q—r—t)x]p+qxl—p—q}—AH;/AH: .
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Fig. 2. Phase diagram of the binary system
MA,—N,B; of the type H/K and T/K.
Ti=1100K, AH{=6.276 X 10*J mol~".
T5=1200K, AH;=10.46x10*J mol~".
X1.e=0.700, T, =903 K.

Fig. 1. Phase diagram of the binary system
MA_.—N,B; of the type H/K and T/K.
Ti=1100K,AH{=6.276 X 10*J mol "
T:=1200K,AH;=10.46 x 10*J mol~".
X1.=0.693, T, =926 K.
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APPLICATION OF THE HAASE RELATIONSHIP

Table 3
System M, A,—N,B, without common ion, type H/H

|
X\ p+q

;
[ p+q "
a1=(ptq) [r+t+(p+q—-r—t)x;| ’

> pt+q
X

; B
S — p+q
ai=(p+q) r+t+(p+q—r—1t)x;}]

1__x1 r+t
I= +t r+t 1 .
a:=(r+1) r+t+(p+q-r—t)xi| °’
s r+t [_ 1_x7 ]rH
s=(r+t
ai=(Ett) [r+t+(p+q—r—1t)x}

Characteristic equation of liquidus curve
Mll(p+q)(r + t)(l —x :)(Q 1/(r+t) __ 1) + O I/(r+()x :(p + q)(Ml/(p+q) _ 1)= O
_ (r + t)(o‘l)/(r+l) _ 1)

TILT{ dT/dx|= OLCAHT R(TY)
lim dT/dx?=(r+t)(§}E;;H)— D r(riy
lim dT/dx;= (p+q) (AI_{?/[‘]’/M) R(Ts)’

models are compared. (The numerical calculations were carried out using computer
Siemens 4004, at the Calculating Centre of Universities, Mlynska dolina, Bratislava, and
computer Minsk 22 at the Faculty of Electrotechnical Engineering, Bratislava.) It should be
mentioned that for the numerical solution of the characteristic equation of the liquidus curve
as well as of nonalgebraic equation of extremum the method of “dividing the interval in
half” [8] was used. The error in calculated composition range (in mole fraction) was less or
equal to 5x107%. '

Comparison of Haase’s and Temkin’s functional relationships
between activity and composition

1. For solutions of the type H/K and K/H only the courses of liquidus and solidus
curves with extremum are possible. In agreement with the principle of
monotonicity [3] the type H/H has always a monotonic course of liquidus curves.
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The same results have been also found for the types T/K, K/T, and T/T.

2. The expressions and equations when utilizing Haase’s approach are from the
formal point of view simpler than those of Temkin’s model.

3. The limit values of slopes of tangents at the melting points of pure components
are the same as for the corresponding types T/K, K/T, and T/T.

4. The courses of liquidus and solidus curves are practically the same regardless
the model applied. However, it cannot be stated that the lines are exactly identical
for the following reasons:

a) The equations which are used for calculation of curves are different according
to functional relationship (Temkin’s or Haase’s) employed. The exact equality of
the roots of these equations cannot be proved since the calculations are performed
by approximate methods. A solution of algebraic equations of higher degrees is the
problem. E.g. the following equations (for the above functional relationships) hold
for the system MA.—NB;

Type Characteristic equation
H/K MQ(4—x)'=3%’Q(4—x)—-M4* (1 —x)*=0
T/K MQB—-x)'-2°x’Q(3—x)—M3*(1—-x)'=0

b) For the sake of completeness it may be stated that the calculations based on
Temkin’s model were carried out on computer Minsk 22 (using Algol 60) and
those based on Haase’s approach on computer Siemens 4004 (using Fortran).

From the items 1—3 the following conclusions for practical application can be
drawn:

The course of liquidus and solidus curves is practically the same regardless the
functional relationship (Haase’s or Temkin’s) used. Therefore for description of
the system we shall use the simpler relationship, in our case the Haase relationship.

The advantages of the Haase relationship are evident from a comparison of the
types H/H and T/T. The relationships for the type H/H are presented in Table 3;
those for the type T/T are as follows '

ai={pxi/[r+xi(p— D)} {gxi/[t+xi(q—O]}" (1)
ar={r(1 —x)/[r+xi(p— O]} {t(l —x1)/[t+xi(q—D]}' (2)
ai={pxi/[r+xi(p—)]}"{qxi/[t+xi(q—O]}" (3)
as={r(1—x)/[r+xi(p—0)}{t(1 —x)/[t+xi(q—1)]}' 4)

The characteristic equation results after elimination of x; and x; from basic
thermodynamic relations (see [3]).
In our case I
M=ai/a;=(x/x})"**{[r+xi(p—0))/[r+x:i(p—1)]}"
Alt+xi(@—-O)[t+xi(@— D]} (%)
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APPLICATION OF THE HAASE RELATIONSHIP

Q=ax/az=[(1 =x)/(1 =x)"{[r+xi(p—D)/[r+xi(p—D)]}"
Alt+xi(q=pl/[t+xi(g=D]} (6)

The elimination in this case is not possible and thus the characteristic equation does
not exist. We have only two nonlinear equations with two variables x| and x; which
are to be solved by a numerical method. But it is not simple to find the best numeri-
cal method for solving these equations and the calculation involves great numerical
difficulties.

The type H/H has a characteristic equation of the first degree for liquidus curve.
Therefore the function x| =f(T) can be expressed explicitly and the calculation of
liquidus curve is very simple in this case.

Symbols

Temkin’s relationship
Haase’s relationship
classically ideal (q,=x,)
universal relationship

cRAraxTH

T, H, K, U denote the relationship which is used to describe the dependence between
activity and composition. E.g. T/K denotes that for liquid solution the Temkin relationship
for activity was used and solid solution is assumed to be classically ideal.

al, a; activity of the i-th component in liquid or in solid state

AH; molar enthalpy of fusion of pure i-th component at temperature T
: temperature of fusion of the i-th component

corresponding liquidus and solidus curves

exp [(AH{/R)(1/T{—1/T")]

exp [(AHYR)(1/T;—1/T"]

exp [(AH{/R)(1/T; = 1/T})]

exp [(AHY/R)(1/TS—1/TY)]

stoichiometric coefficients

gas constant

temperature, K

temperature of extremum

mole fraction of the i-th component in liquid or in solid state
composition of extremum
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