Copper(II) and nickel(II) complexes with oxalamide- $\boldsymbol{N}, \boldsymbol{N}^{\prime}$-di- β-propionic acid

J. VOTAVA, J. HAVEL, and M. BARTUŠEK
Departme nt of Analytical Chemistry, Faculty of Natural Sciences, J. E. Purkyně University, 61137 Brno

Received 23 April 1975

Dedicated to Professor J. Majer, Corresponding Member of the Slovak Academy of Sciences, on his 50th birthday

Formation of oxalamide- N, N^{\prime}-di- β-propionic acid complexes with $\mathrm{Cu}(\mathrm{II})$ in weakly acid and with Ni (II) in alkaline aqueous solutions has been studied using the method of potentiometric acid-base titration. The equilibrium constants of complexes have been computed. The complex-forming ability of homologous reagents OADA and OADP is discussed.

Образование комплексов оксаламид- N, N^{\prime}-ди- β-пропионовой кислоты с $\mathrm{Cu}(\mathrm{II})$ в слабо кислых растворах и с $\mathrm{Ni}(\mathrm{II})$ в щелочных водных растворах нзучается методом потенциометрического титрования со стеклянным электродом. Равновесные константы комплексов разчитаны компютером. Дискусин подвергается способность гомологических реактивов ОАДА п ОАДП образовать комплексы.

Formation of complexes CuLH_{-1}^{-}and $\mathrm{Cu}_{2} \mathrm{LH}_{-2}$ in weakly acid and $\mathrm{Cu}\left(\mathrm{LH}_{-1}\right)_{2}^{4-}$, NiLH_{-1}^{-}, and $\mathrm{Ni}\left(\mathrm{LH}_{-1}\right)_{2}^{4-}$ in alkaline solutions of oxalamide- N, N^{\prime}-diacetic acid $\left(\mathrm{OADA} ; \mathrm{H}_{2} \mathrm{~L}\right)$ has been studied recently [1]. The interaction of OADA with $\mathrm{Cu}(\mathrm{II})$ and $\mathrm{Ni}(\mathrm{II})$, in which the stable chelate configuration I is formed, is a reaction of the biuret type [2]; a proton from the amide group splits off in formation of these complexes. In the present paper complexes of oxalamide- $N, \mathrm{~V}^{\prime}$-di- β-propionic acid (OADP; $\mathrm{H}_{2} \mathrm{~L}$; formula $I I$), a homologous reagent of OADA, are studied

I

II

Experimental

Automatic registration assembly ABU-12, PHM-26, TTT-11 and SBR (Radiometer, Denmark) was used for titration with $0.1 \mathrm{M}-\mathrm{NaOH}$ at $t=20 \pm 1^{\circ} \mathrm{C}$ and $I=0.1\left(\mathrm{KNO}_{3}\right)$. The pH -meter with a glass electrode G-202B and sce was adjusted with the phosphate buffer to pH 6.50 (electrodes and buffer made by Radiometer). The value of the functions
\bar{z} and ${ }_{\mathrm{I}} \bar{z}$ was calculated from the titration curves, as described in [3]. The \bar{z} and $\mathrm{I}_{\mathrm{L}} \bar{z}$ values indicate the average number of H^{+}moles split off per one mole of metal and ligand, respectively.

The calculations were carried out in the Computer Centre of the Technical University, Brno, using a Tesla 200 computer and POT-3 program [4]. The input for the POT-3 program contained the characteristics of the studied chemical reactions, the estimated equilibrium constants values, the acidity constants of the reagent, the total concentrations of the metal ion and the ligand (c_{M} and c_{L}) and the experimentally determined pH and ${ }_{\mathrm{L}} \bar{z}$ values. The POT-3 program started with calculation of ${ }_{\mathrm{L}} \bar{z}$ for given pH values using the approximate equilibrium constants; it compared the experimental and the calculated ${ }_{\mathrm{L}} \bar{z}$ values ($\mathrm{L}_{\mathrm{exp}}$ and ${ }_{\mathrm{L}} \bar{z}_{\mathrm{calc}}$) and it searched for the "best" equilibrium constants, characterized by a minimum $\Sigma\left({ }_{\mathrm{L}} \bar{z}_{\text {exp }}-\mathrm{L}_{\mathrm{z}} \overline{\mathrm{calc}}\right)^{2}$ value.

Preparation of OADP

0.2 mole β-alanine in about 50 ml water was neutralized with equivalent NaOH and 0.1 mole diethyl oxalate was added to the solution. The ester phase disappeared after about 5 minutes shaking. Excess HCl was added 4 hrs later for precipitation of white crystals of free OADP. After recrystallization from hot water the product (yield about 30%) was titrated with $0.1 \mathrm{M}-\mathrm{NaOH}$ on phenolphthaleine. The titration gives $M_{\mathrm{r}}=230.0$ for the dibasic acid while from the formula $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{6} \mathrm{~N}_{2} M_{\mathrm{r}}=232.2$ was calculated.

Results and discussion

OADP splits off 2 protons in the region of $\mathrm{pH} 2-7$. The values $\mathrm{p} K_{\mathrm{a} 1}=3.92$ and $\mathrm{p} K_{\mathrm{a} 2}=4.68$ were determined by an analysis of titration curves of solutions with $c_{\mathrm{L}} 1.25$ and 1.87 mM .

Formation of blue colour and an increased volume of base which is necessary to attain $\mathrm{pH} 6-7$ are observed in titration of OADP in the presence of Cu^{2+}. The increased consumption of base indicates that 1 proton is split off per 1 Cu in solutions with $c_{\mathrm{M}}<c_{\mathrm{L}}$. Blue precipitate formed at $\mathrm{pH}>4.5$ and $c_{\mathrm{M}}>2 c_{\mathrm{L}}$ interferes seriously with the pH measurement and titration curves, which can be measured only approximatively in solutions containing precipitate, indicate that 4 protons are split off from the reagent $\mathrm{H}_{2} \mathrm{~L} .31 .8 \% \mathrm{Cu}$ was determined by an analysis of the precipitate and $35.8 \% \mathrm{Cu}$ was calculated from the formula $\mathrm{Cu}_{2} \mathrm{LH}_{-2}$. The difference between the calculated and the experimental value can be explained by coprecipitation of OADP and by hydration of the species.

Neutralization of OADP and OADA, both in absence and in presence of Cu^{2+}, is similar. Therefore equilibria $(A-D)$ established in acid solutions of OADA [1], are supposed to take place also in solutions containing OADP and $\mathrm{Cu}(\mathrm{II})$ at $\mathrm{pH}<7$.

$$
\begin{array}{ll}
\mathrm{H}_{2} \mathrm{~L}=\mathrm{HL}^{-}+\mathrm{H}^{+} & K_{\mathrm{a} 1}, \\
\mathrm{HL}^{-}=\mathrm{L}^{2-}+\mathrm{H}^{+} & K_{\mathrm{a} 2}, \\
\mathrm{M}^{2+}+\mathrm{H}_{2} \mathrm{~L}=\mathrm{MLH}_{-1}^{-}+3 \mathrm{H}^{+} & * K_{1}, \\
2 \mathrm{M}^{2+}+\mathrm{H}_{2} \mathrm{~L}=\mathrm{M}_{2} \mathrm{LH}_{-2}+4 \mathrm{H}^{+} & { }^{*} K_{2} . \tag{D}
\end{array}
$$

Acid OADP solutions with Cu^{2+} (for c_{M} and c_{L} see Fig. 1) were titrated with $0.1 \mathrm{M}-\mathrm{NaOH}$ and the dependence of L_{L} on pH was determined. The $\mathrm{L}_{\mathrm{L}} \bar{z}$ value indicates
the average number of protons split off from $\mathrm{H}_{2} \mathrm{~L}$ (compare eqn (1); the charges of ions are omitted for the sake of simplicity).

$$
\begin{equation*}
{ }_{\mathrm{L}} \bar{z}=\frac{[\mathrm{HL}]+2[\mathrm{~L}]+3\left[\mathrm{MLH}_{-1}\right]+4\left[\mathrm{M}_{2} \mathrm{LH}_{-2}\right]}{\left[\mathrm{H}_{2} \mathrm{~L}\right]+[\mathrm{HL}]+[\mathrm{L}]+\left[\mathrm{MLH}_{-1}\right]+\left[\mathrm{M}_{2} \mathrm{LH}-2\right]} . \tag{1}
\end{equation*}
$$

The manual calculation of $* K_{1}$ and ${ }^{*} K_{2}$ from the potentiometric titration data [1] is extremely laborious. The application of the POT-3 program is more effective, however, it requires a knowledge of the estimated values of $* K_{1}$ and ${ }^{*} K_{2}$. In this estimate, it seems reasonable to assume, that the reaction (C) takes place in a more acid medium than (D). We have to find such a c_{M}, for which ${ }_{\mathrm{L}} \bar{z}=2.0$ in a solution with $c_{\mathrm{M}}>c_{\mathrm{L}}$ at $\mathrm{pH}=\left(\mathrm{p} K_{\mathrm{a} 1}+\mathrm{p} K_{\mathrm{a} 2}\right) / 2$. Then it holds $\left[\mathrm{H}_{2} \mathrm{~L}\right] \ll[\mathrm{HL}] \gg[\mathrm{L}]$. For these special conditions approximations (2-4) can be accepted

$$
\begin{gather*}
0.5 c_{\mathrm{L}} \approx[\mathrm{MLH}-1] \approx[\mathrm{HL}] \tag{2}\\
{[\mathrm{M}] \approx c_{\mathrm{M}}-0.5 c_{\mathrm{L}}} \tag{3}\\
* K_{1} \approx K_{\mathrm{a} 1}\left(K_{\mathrm{a} 1}+K_{\mathrm{a} 2}\right)^{2} / 4\left(c_{\mathrm{M}}-0.5 c_{\mathrm{L}}\right) \tag{4}
\end{gather*}
$$

When the reaction (D) takes place in a more alkaline medium than (C), approximations (5-6) describe sufficiently well the concentrations in solutions with a pH corresponding to ${ }_{\mathrm{L}} \bar{z}=3.5$.

$$
\begin{gather*}
{\left[\mathrm{MLH}_{-1}\right] \approx\left[\mathrm{M}_{2} \mathrm{LH}_{-2}\right] \approx 0.5 c_{\mathrm{L}}} \tag{5}\\
{[\mathrm{M}] \approx c_{\mathrm{M}}-1.5 c_{\mathrm{L}}} \tag{6}\\
* K_{2} \approx * K_{1}[\mathrm{H}] /\left(c_{\mathrm{M}}-1.5 c_{\mathrm{L}}\right) \tag{7}
\end{gather*}
$$

The values of ${ }^{*} K_{1}$ and ${ }^{*} K_{2}$ were calculated from the approximations (4) and (7) and they were precised by means of the program. Small differences between the estimated and calculated values of equilibrium constants in Table 1 demonstrate, that the approximations $(2-7)$ describe quite well the concentrations in the studied solutions. A good coincidence of ${ }_{\mathrm{z}} \bar{z}_{\text {calc }}$ and ${ }_{\mathrm{z}} \bar{z}_{\text {exp }}$ may be seen in Fig. 1 .

Precipitate of the $\mathrm{Cu}(\mathrm{II})$ salt is formed in neutral and alkaline solutions even in the presence of an excess of OADP ($c_{\mathrm{M}} 1.5$ and $c_{\mathrm{L}} 30 \mathrm{mM}$). Ni(II) forms soluble brown complexes in these media. The titration of $\mathrm{Ni}(\mathrm{II})$ solution with $c_{\mathrm{M}} 1.67$ and

Table 1
Constants of reactions ($A-D$) calculated from titration curves in the region of $\mathrm{pH} 3.4-4.7$ and ${ }_{\mathrm{L}} \bar{z} 0.24-2.44$

	Value	
$\mathrm{p} K$	Input	Calculated by POT-3
$\mathrm{p} K_{\mathrm{a} 1}$	3.92^{a}	3.79 ± 0.02^{c}
$\mathrm{p} K_{\mathrm{a} 2}$	4.68^{a}	4.92 ± 0.03
$\mathrm{p}^{*} K_{1}$	9.5^{b}	9.65 ± 0.03
$\mathrm{p}^{*} K_{2}$	10.8^{b}	10.64 ± 0.01

a) Determined graphically at $c_{\mathrm{M}}=0$.
b) Approximation (4) and (7).
c) \pm Standard deviation.
$c_{\mathrm{L}} 5.9,11.8,17.7$, and 29.5 mM was performed at $\mathrm{pH} 7-11$. In this region the function \bar{z}, indicating the average number of moles of hydrogen ions split off per 1 mole $\mathrm{Ni}(\mathrm{II})$, increases from $\bar{z}=0$ to $\bar{z}=1.8$ with increasing pH . The formation

Fig. 1. The ${ }_{\mathrm{L}} \bar{z}(\mathrm{pH})$ plot for the system $\mathrm{Cu}(\mathrm{II})-\mathrm{OADP}$.
The points represent experimental values; the curves were calculated using the "best" values of constants given in Table 1.
${ }_{\mathrm{L}} \bar{z}=\mathrm{Y}-1$ for curves $1-3$ and $\mathrm{L}_{\mathrm{z}}=\mathrm{Y}$ for curves $4-7$. $c_{\mathrm{M}}(\mathrm{mM}): 1.87(1-3)$ and $1.25(4-7)$.
$c_{\mathrm{L}}(\mathrm{mM}): 2.50$ (1 and 4); 2.25 (2); 1.87 (3); 2.00 (5); 1.50 (6); 1.25 (7).
curve $\bar{z}(\mathrm{pH})$ consists of 2 steps. At $\mathrm{pH} 8.5-9.5$ the value of \bar{z} is close to one and the value of $\Delta \bar{z} / \Delta \mathrm{pH}$ in this acidity region is smaller than at $\mathrm{pH}>9.5$ and $\mathrm{pH}<8.5$. Regarding the mentioned parameters, the system $\mathrm{Ni}(\mathrm{II})-\mathrm{OADA}$, for which reactions (E) and (F) proved true [1], is identical with the system $\mathrm{Ni}(\mathrm{II})-$ OADP.

$$
\begin{array}{cl}
\mathrm{NiL}=\mathrm{NiLH}_{-1}^{-}+\mathrm{H}^{+} & * K_{4}, \\
\mathrm{NiLH}_{-1}^{-}+\mathrm{L}^{2-}={\mathrm{Ni}\left(\mathrm{LH}_{-1}\right)_{2}^{4-}+\mathrm{H}^{+}}^{*} K_{\mathbf{3}} . \tag{F}
\end{array}
$$

The plateau at the formation curves in the region of $\bar{z}=1$ and $\mathrm{pH} \approx 9$ indicates, that (E) and (F) are the main equilibria taking place in solutions at $\mathrm{pH}<9$ and $\mathrm{pH}>9$, respectively. Using reagent OADA, the function $\bar{z}(\mathrm{pH})$ was proved to be independent on $c_{\mathbf{L}}$ for the reaction (E). For OADP, the formation curve $\bar{z}(\mathrm{pH})$ shifts to lower pH values with increasing c_{L}. The plot $[\mathrm{H}]_{\bar{z}=0.5}=\mathrm{f}\left(c_{\mathrm{L}}\right)$ is linear, only the point for the lowest c_{L} deviates from the line, probably because of hydrolysis in the solution with a very small excess of reagent. The dependence of $[\mathrm{H}]_{\bar{z}=0.5}$ on c_{L} may be explained in two different ways which seem to be of an equal probability.

First, it may be assumed, that the equilibrium (E) is accompanied by (G). The function \bar{z} is defined by eqn (8), which can be transformed into (9)

$$
\begin{gather*}
\mathrm{NiLH}_{-1}^{-}+\mathrm{L}^{2-}=\mathrm{NiL}_{2} \mathrm{H}_{-1}^{3-} \quad * K_{5}, \tag{G}\\
\bar{z}=\left(\left[\mathrm{NiLH}_{-1}\right]+\left[\mathrm{NiL}_{2} \mathrm{H}_{-1}\right]\right) /\left(\left[\mathrm{NiL}^{2}\right]+\left[\mathrm{NiLH}_{-1}\right]+\left[\mathrm{NiL}_{2} \mathrm{H}_{-1}\right]\right), \tag{8}\\
\bar{z}[\mathrm{H}] /(1-\bar{z})={ }^{*} K_{4}+{ }^{*} K_{5}[\mathrm{~L}] . \tag{9}
\end{gather*}
$$

When $[\mathrm{H}]=[\mathrm{H}]_{\bar{z}=0.5}$ then $\bar{z} /(1-\bar{z})=1$ and for $c_{\mathrm{L}} \gg c_{\mathrm{M}}$ is $[\mathrm{L}] \approx c_{\mathrm{L}}$ at $\mathrm{pH}>7$. 'The graphical transformation $[\mathrm{H}]_{\bar{z}=0.5}=\mathrm{f}\left(c_{\mathrm{L}}\right)$ based on eqn (9) is linear and gives the values $\mathrm{p}^{*} K_{4} 8.1$ and $\mathrm{p}^{*} K_{5} 6.3$.

The other possible explanation is based on the assumption that reaction (E) is accompanied by some unknown hydrolytic process. The smaller c_{L} is, the more the hydrolysis proceeds which results in a shifts of the formation curve. The "best" value $\mathrm{p}^{*} K_{4}=7.7$, corresponds to $[\mathrm{H}]_{\bar{z}=0.5}$ determined in a solution with the largest c_{L}, in which the hydrolysis is most suppressed.

The values of $\mathrm{p}^{*} K_{4}$ determined in both ways were of the same order of magnitude (8.1 and 7.7) which confirms the existence of the equilibrium (E) in studied solutions. The greenish colloid which precipitates after several hours from $\mathrm{Ni}(\mathrm{II})$ solutions containing OADP at $\mathrm{pH}>10$ indicates a slow hydrolysis of the $\mathrm{Ni}(\mathrm{II})$ complex. No further study of the system $\mathrm{Ni}(\mathrm{II})$-OADP was carried on because of the complicated interpretation of thermodynamic and mainly kinetic parameters of this hydrolysis, in which most probably the formation of oligonuclear species is involved.

Conclusion

The reagents OADP and OADA give analogous reactions with $\mathrm{Cu}(\mathrm{II})$ and $\mathrm{Ni}(\mathrm{II})$. The higher homologue OADP is a weaker acid than OADA (see Table 2). Since only 2 protons dissociate from both reagents in aqueous solution, neither the values $K_{\text {a3 }}, K_{\text {a4 }}$ nor the stability constants of complexes can be determined. The equilibrium constants * K_{1} and K_{1}^{\prime} for the complex CuLH_{-2} with OADP and OADA differ only by one order of magnitude and the corresponding constants for $\mathrm{Cu}_{2} \mathrm{LH}_{-2}$ are of the same order of magnitude. This indicates that an increase in the number of atoms in the chelate cycle from 5 (OADA) to 6 (OADP) does not affect markedly the stability of these $\mathrm{Cu}(\mathrm{II})$ complexes. Chaberek and Martell [5] reported a significant decrease in stability of $\mathrm{Ci}(\mathrm{II})$ chelates when 5 -membered chelate rings were replaced by the 6 -membered ones. The insignificant stability difference between the $\mathrm{Cu}(\mathrm{II})$ chelates with OADA and OADP indicates, that the chelate cycle with a coordinated carbonyl group

Table 2

Acidity constants of reagents OADA and OADP and equilibrium constants of their complexes

\boldsymbol{K}	$-\log K$				
	OADA		OADP		
	Cu	Ni	Cu		Ni
$\boldsymbol{K}_{\mathrm{al} 1}=\left[\mathrm{HL}^{-}\right]\left[\mathrm{H}^{+}\right] /\left[\mathrm{H}_{2} \mathrm{~L}\right]$	3.1		3.9		
$K_{\mathrm{a} 2}=\left[\mathrm{L}^{2-}\right]\left[\mathrm{H}^{+}\right] /\left[\mathrm{HL}^{-}\right]$	3.6		4.7		
${ }^{*} K_{1}=\left[\mathrm{CuLH}_{1}{ }^{-1}\left[\mathrm{H}^{+}\right]^{3} /\left[\mathrm{Cu}^{2+}\right]\left[\mathrm{H}_{2} \mathrm{~L}\right]\right.$	8.6	-	9.7		-
$K^{\prime}{ }_{1}=\left[\mathrm{CuLH}_{-1}^{-}\right]\left[\mathrm{H}^{+}\right] /\left[\mathrm{Cu}^{2+}\right]\left[\mathrm{L}^{2-}\right]$	1.9	-	0.9		-
${ }^{*} K_{2}=\left[\mathrm{Cu}_{2} \mathrm{LH}_{-2}{ }^{2}\left[\mathrm{H}^{+}\right]^{4} /\left[\mathrm{Cu}^{2+}\right]^{2}\left[\mathrm{H}_{2} \mathrm{~L}\right]\right.$	10.2	-	10.6		-
$K_{2}^{\prime}=\left[\mathrm{Cu}_{2} \mathrm{LH}_{-2}\right]\left[\mathrm{H}^{+}\right] /\left[\mathrm{CuLH}_{-1}\right]\left[\mathrm{Cu}^{2+}\right]$	1.6	-	1.8		-
${ }^{*} \mathbf{K}_{3}=\left[\mathrm{M}\left(\mathrm{LH}_{-1}\right)_{2}^{4-}\right]\left[\mathrm{H}^{+}\right] /\left[\mathrm{MLH}_{-1}^{-1}\right]\left[\mathrm{L}^{2-}\right]$	6.6	7.6	-		-
$*^{*} K_{4}=\left[\mathrm{NiLH}_{-1}^{-1}\right]\left[\mathrm{H}^{+}\right] /[\mathrm{NiL}]$	-	7.8	-		≈ 8

(compare I), which is identical in chelates of both reagents, contributes substantially to the complex stability. Also the $\mathrm{Ni}(\mathrm{II})$ complexes of OADP and OADA show a very small difference in stability.

References

1. Sprta, F. and Bartušek, M., Collect. Czech. Chem. Commun. 39, 2023 (1974).
2. Pfeiffer, F. and Saure, S., J. Prakt. Chem. 157, 97 (1941).
3. Bartušek, M., Collect. Czech. Chem. 'Commun. 30, 2746 .(1965).
4. Strádalová, O. and Havel, J., Scripta Facult. Sci. Nat. Univ. J. E. Purkyně, Brno, in press.
5. Chaberek, S. and Martell, A. E., J. Amer. Chem. Soc. 75, 2288 (1953).

Translated by M. Bartusek

