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The thermodynamic analysis of the course of liquidus and solidus curves 
in binary systems having complete miscibility in both liquid and solid 
states was carried out. The binary systems of the type NA —NBt with 
common ion were considered. The object of the treatment was the so-called 
type I after Roozeboom (both liquidus and solidus curves have a mono­
tonous course). I t is assumed that the liquid solution obeys the Temkin 
ideal model and the solid one the classic ideal model. 

Let us denote the component NA as " 1 " , the component NB t as "2" . The 
figures 1 and 2 will be used also as distinguishing indices at parameters 
Tf, AH1, as, xB, a1, xl. Then it can be proved that the thermodynamic con­
ditions for the existence of such systems are as follows 

T{ > T{, 

AH{>RT[-rt l n t -

A relation which enables one to calculate the value of the enthalpy of 
fusion AH\ of component " 1 " was derived. I t is only necessary to know the 
value of the slopes of tangents to liquidus and solidus curves at the melt­
ing point Tf

2 of component "2" . 

The equations describing the shape of liquidus and solidus curves in binary systems 
having complete miscibility of components in both liquid and solid states have been 
derived by van Laar [1]. The thermodynamic analysis of these equations, in the main 
with respect to the physical meaning of the slopes of tangents 'to liquidus and solidus 
curves for x -> 0 and x -> 1, was carried out in [2]. I t was assumed that the activities 
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of both components were identical with their concentrations and therefore the Storten-
beker factors &f*2

 a n d &|д w ^ r e equal to one [2]. As it has been shown [2], for the acti­
vities of both components and the corresponding temperature one may set 

a\ AH[ / 1 1 \ 
In = — ' (7) 

4 AH{ / 1 1 \ 
1п^Г^1^Г^)' {2) 

In eqns (1) and (2) the values of the change of enthalpy in the process "solidus — 
— liquidus" are constant for both components, i.e. 

AHf = AH[ = const > 0, (3) 

AHf = AH{ = const > 0. (4) 

This assumption (which is equivalent to the requirement AC]jř = 0) is fulfilled with 
satisfaction practically for all substances unless the difference between their tempera­
tures of fusion T[ and T 2 is too great. 

In this work, binary molten systems with common ion of the type NA —NBt having 
^i/i = ť kff2 = 1 were investigated (N = cation or anion, А, В = ions of opposite 
sign of charge with respect to N, t > 1). 

The Stortenbeker correction factor &§д is equal to the number of new (foreign) particles 
(also ions) which arise in the system formed by the pure substance " 1 " as a result of 
introducing one molecule of the substance " 2 " . An analogous definition holds for А:^2. 

We shall assume t h a t : 
1. The behaviour of liquid phase can be described by the Temkin model of ideal ionic 

solutions [3 — 5]. Then it holds 

x\ 

t - x\(t - 1) 

Г 'Л ľ 
L i + 4(t - D J ' (e) 

where a\, x\ are the activity and mole fraction of the first component (i.e. NA) in the 
liquid solution and a 2 , x\ are the same parameters of the second component. I t holds 
x\ + 4 = 1. 

2. The solid solution of components " 1 " and " 2 " is classically ideal, i.e. 

a\ = x\, (7) 

a 2 = * 2 , (8) 

where a\, x\, a 2 , xfz are the activities and mole fractions, resp., of components in the 
solid solution; x\ + # 2 = 1. 

We shall introduce the functions M and Q which are defined as follows: 

a\ x\ \AH\ / 1 1 \ 1 
M = - L = -1- = exp 1 ( — - — , (9) 

a\ x\\t-x\(t- 1)] I R \T[ T \ 
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Q = A =.___ ±* - 4 > ! _ _ _ = exp № / L _ J_\l 
<4 (1 - ÍCJ) [t - x\(t - 1)]* L R \T2 T /J 

(iÖ) 

Because it is a binary system which is discussed, it has to be valid that T Ф T[ and 
T Ф T\Ĺ and therefore T can take only the values from the open interval (T\; T\z). How­
ever in binary systems it must also hold 

lim x\ = 0; lim x[ = 1. 

Thus in our considerations we shall identify for briefness the limit with the functional 
value of mole fraction in terminal points of the interval <0;1>, i.e. the temperature T 
will be chosen from the closed interval ^T\',T^}. 

From (9) it follows 

M[t - x\(t - 1)] 
(U) 

After substituting x\ from (11) into (10) an algebraic equation of the t-th degree is ob­
tained 

Q[M t - x(M t - M + 1)] [t - x(t - I ) ]*" 1 - t* M(\ - x)* = F(x, T); 

F(x,T)--=0. (12) 

The equation has t roots which are in the equation denoted as x instead of x\. With 
respect to the physical unambiguousness only one of them can be located in the interval 
<0;1>. This physically real root will be denoted again as x\ . 

The degree of eqn (12) is identical with the number of ions of the second component 
which are not present in the first component. I t equals therefore fcf/i • Eqn (12) holds 
also for t = 1. In this case it follows from (5) and (6) 

i.e., the Temkin model provides for the type NA —NB the same relations as the classic 
model. The coefficients in eqn (12) are functions of the temperature T e <Tj;TÍ), en­
thalpies of fusion AH\, AK\, temperatures of fusion T[, TÍ2 and of the parameter t. For 
each temperature T e (Т\\Т1^} we obtain an equation with different coefficients and 
therefore with other roots as well. 

As it has been mentioned, if the Temkin model should be able to describe the mono­
tonous course of liquidus and solidus curves in the interval (T[;Tly, it must be just 
one root of eqn (12) from the interval <0;1>. With a continuous change of temperature 
from T[ to T% and in the opposite direction a continuous change of the root x\ in the 
interval <0;1> must occur. 

I t is necessary to examine: 
1. Whether eqn (12) has a root which equals zero or one regardless of the value of 

parameters t, T[, T{, AH[, AH{. 
2. Whether eqn (12) has a root which equals zero for T = Ti and under what condi­

tions will be the root positive for T e <Т£;Т|> and T ф Т£. 
3. Whether eqn (12) has a root which equals one for T = T\ and under what condi­

tions is this root lower than one for T e (T[;Tl} and T Ф Т[. 
4. What are the slopes of tangents to liquidus and solidus curves for xi ->- 0 and xi -* 1. 
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la. Investigation of the existence of a root which is equal to zero for T = T[ 

For T = T{, taking into account (9) and {10), Q =-= 1, 

\AH[ 
M = M0 = exp ' ^(JL_±V| 

R \T[ Tf
2J\ 

Then eqn (12) can be written as 

[MQt - x(M0t - Mo + 1)] [t + x(l - t)]t-i - ttilfo(l - x)* = 0. (13) 

The expressions [t + x(l — t ) ] t _ 1 and (1 — x)1 can be raised to power by means of 
the binomial expansion: 

[t-b*(i -t)]t-i = [0J tt-i + (* "7 M t* - 8 ^ 1 -* ) ]+• • -UI 1 ) М 1 - Ч ] и = 

= t*- 1 + хЧГ^х), 

where 4?i(x) is the (t — 2)nd degree polynomial. 
Similarly 

(1 - я)* = 1 + хЧГ2(х), 

where ^(a?) is the polynomial of the (t — l)st degree. 
Then eqn (13) results in 

[M0t - x(M0t - M0 + 1)] [tt-i + x Yľ(x)] - tm0[l + x Y2(x)]. 

After multiplication and simplifying we obtain 

x[- (M0t - Mo + 1) t*-i + Moťi\(x) - (M0t - Mo + 1) xYi(x) -

- tfMo Т2(я?)] = x Ф(х) = 0, (14) 

where Ф(х) is the polynomial of the (t — l)st degree. 
From eqn (14) it can be seen that for T = T\ eqn (12) has one root which is equal 

to zero regardless of the value of the parameters t, T\, T%, AH[, AH{

2. 
We shall examine further a possibility of a multiple root of eqn (12) which equals 

zero. 
A necessary and sufficient condition which is to be fulfilled in order that a number a 

would be the r-fold root of an equation f(x) = 0 is as follows ([6], p. 67): 

f(oc) = f'(a) = . . . f(r-D(a) = 0 but f<r>(a) ф 0. 

Let us consider the first two derivatives of eqn (13) 

F'(x, Tt) = - [Mot - Mo + 1] [t - x(t - l)]t-i -f 

+ [M 0 t - x(Mot - Mo + 1)] (t - 1) [t - x(t - l ) ] ť - 2 [ - (t - 1)] + tt:-iMo(l - x)i-\ 

F"(a?f T{) = 2[M0t - Mo + 1] (t - 1)2 [t - x(t - l)]t-2 + 

+ [Mot - x(Mot - Mo + 1)] (t - l ) 3 (t - 2) [t - x(t - l)]t-3 -

- t t + 1 ( t - 1)M 0 (1 - ж)4-2. 
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After rearrangement and setting x = 0 we obtain 

F'(0, Tl) = Mot* - t*-1, (15) 

F"(0, Tí) = tt-2(t - 1) [ M 0 t ( - 2t + 1) + 2(t - 1)]. (16) 

For F'(0, TÍ») = 0, it follows from eqn (75) 

Mo = t - i (17) 

or after taking the logarithm 

Jfí5 = Ä^rk lnt- (18) 

With respect to eqn (9) the function M equals one only for T = T[. Eqn (17) cannot 
be satisfied for t = 1 what means that eqn (12) cannot have a double root which equals 
zero at the point T = T\ in the case of the solution of the type NA —NB. 

Substituting eqn (17) into eqn (16) we obtain 

Р"(0,Г£) л / в 1 г1= - t t-2( t - 1). (19) 

I t is obvious that for t > 1, F'^O, Т|)Л/= 1-1 is always different from zero and it follows 
that eqn (12) has for T = T | and for valid relation (17) a double root which equals zero 
regardless of the degree of this equation. 

Let us have a look at the geometrical and physical meaning of the double root which 
is equal to zero. 

Let us consider eqn (12) to be a function T = f (x) which is given implicitly in the 
interval <0;1> by the equation F(x,T) = 0 ([7], p. 377). Then 

dF 

dT _ dx 

dx dF 

dT 

(20) 

with 

dF í AH[ AHÍ, Г AHÍ AH[ AHÍ AH[ 
= \MQt - + MQt - + x\QM +QM l--Q - tMQ - -

dT \ RT* RT* I RT* RT2 RT2 RT2 

-tMQ - I t + x(l - t) I ľ - M U l(l - x)*, (21) 
RT*\)l J RT2 

dF 
= Q(M - 1 - Mt) [t + x(l - t ) ]*" 1 + Q\Mt - x(Mt - M + 1)] (t - 1) -

дх 
• [t 4- x(l - t)]t-2(i - t) + t t + 1 ( l - я ) * - 1 M. 

AVith respect to eqn (20) 

and simultaneously 

\&тл raFi 
— = 0 i f — = o 

L d # J T = T£ \_dx \т=тК 

raFi 

1дТ]т=т<2 
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However , the symbol | | has the same meaning as the symbol F'(x, Tf>). 

Because 

r-i i 
[dx \T=TI 

\ — \ =Mo 
t AHÍ, 

t* 
щпу f\2 

a n d this expression differs from zero for each t , t h e equat ion F ' ( . T , T!,) = 0 is equiva lent 

t o t h e e q u a t i o n 

[-1 -• 
L dx \T=T[ 

d2T 
I f a t t h e same t i m e Ф 0 a t t h e p o i n t T = 1%, t h e function T = f (x) h a s a n 

dx2 

e x t r é m ů m a t t h e po int T = T\. 

d2T d2F 0 F 
According to [7] (p. 378, e q n (4)), = 0 if = 0 a n d — - ф 0 . T h e symbol 

drc2 дх2 dy 

г a2F 1 
is equiva lent t o t h e symbol F " ( 0 , T:>). According to eqn (19) th i s 

L da;2 _|Т=ТГ

2. a; = 0 
expression differs from zero for each t > 1. I t follows from this t h a t t h e double 
zero p o i n t of t h e equat ion F (x, T) = 0 is s imultaneous ly t h e e x t r é m ů m of t h e function 
T = f (x) w h i c h is defined in t h e interval <0;1> implicit ly b y t h e e q u a t i o n F(x, T) = 0. 
T h e e x t r é m ů m is a t t h e p o i n t T = TÍ. 

lb. Examination of the existence of the root which equals one at T = T[ 

F o r T = T[, M = 1, 

AHÍ / 1 [АЩ / 1 1 \ 1 

T h u s eqn (12) results in 

Qo[t + x(- t)] [t + x(l - t ) ] t- i - t*(l - xY = 0 

a n d after simplifying 

(1 - x) [Qot{t + x(l - t)}t-i - tt] = 0. (22) 

F r o m t h e expression (22) i t c a n be seen t h a t for T = T[, t h e equat ion h a s a root x\ = 1 

regardless of t h e va lue of t h e p a r a m e t e r s t , T\, T | , AH\9 AHÍZ. 

I n addi t ion we shall examine t h e possibili ty of a double root of eqn (12) a t T = T[ 

which equals one. 

V'(x, T[) = - tQ0[t + x(l - t ) ] t - i + QQ(t - tx) (t - 1) [ t*( l - t ) ] ' - 2 + 

+ tt+1(l - x)t-K 

A necessary condit ion for t h e existence of t he double root which is equal to one a t T = 

= T[ m a y be given as F ' ( 1 , T $ ) = 0. 
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F'(l , T[) = - t(3o[t + 1 - t]t-i = - tQo = 0. (23). 

However, the condition (23) cannot be satisfied because both terms of the product tQo 
differ from zero. Hence eqn (12) has for T = T[ only a simple root x = 1, i.e. the rela­
tion based on the Temkin model cannot have an extrémům at the point T = T[. 

Consequently eqn (12) has for T = To a simple root which equals zero and for T = T{ 
a simple root which equals one regardless of the magnitude of the parameters t, T\,. 
Tf>, AH[, AErfz. If the value of the enthalpy of fusion AH[ is given by the expression (18) 
then the equation has a double root which equals zero. The double root which equals 
one cannot exist if we use the Temkin model. 

2. Examination of the conditions having influence on the sign 
of the differential dx at the point T = Tl 

With respect to the relations (20) and (21) one obtains for T = Tf>: 

r_oľn = i?(T|)2-(l - M 0 t ) 

[ d a j j r ^ r ; tMoAHÍ, 
or 

tMQAHl 
[dx\T=T\ = dxQ = dT. 

i?(T|)2. (1 - M0t) 
If 1 — M 0 t = 0 and hence if the relation (17) or (18) is valid (what is equivalent to the 
existence of a double root of eqn (12) which is equal to zero) then the relation (24) shows 
that the first derivative of the liquidus curve at the point T = Tf> equals zero. Taking 

V dT 1 
into account the non-zero derivative we have to consider two cases: [—1 

2a. T[ > T{ 

In this case, if we require a monotonous course of liquidus curve inside the interval 

[ dTl 
> 0, i.e. 

dx \T=T\ 

1 - Mot > 0 
and after rearrangement 

AH[>R L _ 2 _ _ l n t e (25} 
T{ -T{ 

With respect to this condition the increment cLco is positive when temperature increases 
from To by dT, i.e. the root of eqn (12) is shifted inward the interval <0;1> this being 
in agreement with the requirement of physical reality. The condition (25) can be 
expressed as a function of the difference of temperatures of fusion AT = T[ — TÍ2 as 
follows: 

AH[ > RT{ [—1 + 11 In t . (25a) 
[AT J 

The higher is the difference of temperatures of fusion AT and the lower is the temperature 
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•of fusion of the second component T j , the lower will be the critical value of the enthalpy 
of fusion AH\ in order to satisfy the inequality (25a). 

2b. T[ < Tl 

For satisfying a monotonous course inside the interval <Т[;Т£> the following condi­
tion is to be fulfilled 

YdTl 
< 0, i.e. 1 - M0t < 0 

I dx \T = T\ 
and after rearrangement 

AH[ > -R ^ — In ť. (26) 
Tf, - T[ 

For T % — Т[ > 0 and t > 1, the expression on the right side of the inequality (26) 
is always negative and hence the inequality is always, satisfied. For t = 1, the right 
side of the inequality (26) equals zero. In this case the Temkin model gives the same 
relations as the classic one. There is no limiting condition for the magnitude of AH[ 
excepting — in agreement with eqn (3) — that AH[ > 0. 

We may summarize the results of the item 2 as follows: Considering T[ > T | , we 
obtain for T = TÍ and for dT > 0 a positive value of cLco. I t means that if AH[ satisfies 
the condition (25) the root is shifted inward the interval <0;1>. For T[ < T | , ^ o is 
always positive. The latter result does not contradict the physical reality, too. 

3. Examination of the conditions having influence on the sign 
of dx at the point T =T[ 

Let us consider again eqn (12) as a function T = f (x) which is given in the interval 
<0;1> implicitly by the equation F(x, T) = 0. With respect to (20) and (21) we obtain 

AH[ 
[dx]T=T[ = dx! = — d T . (27) 

tR(T[)2 

In the next, we can distinguish two cases: 

3a. T[ > T{ 

From eqn (27) it follows that dT and d# have the same sign at the point T = T[. 
I t means that if temperature falls from T[ by dT the value of the root decreases simul­
taneously by clri, being the condition of physical reality. 

3b. T[ < T[. 

Physical reality requires dx < 0 at an increase of temperature from T[ by dT what 
is in contrast to the relation (27). 

These results show that the binary system of the type NA—NB t , with a monotonous 
course of liquidus and solidus curves, which obeys the Temkin model in the liquid state 
and the classic model in the solid state can exist only if T[ > T^ and if m addition the 
inequality (25) or eqn (18) are satisfied. 
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4. Limit values of the slopes of tangents to Hquidus and solidus curves at the melting 

points of pure components and their relationship to the enthalpies of fusion AH[ and A Hi 

We consider t h e root of eqn (12) which has t h e c h a r a c t e r of t h e mole fraction for all 

T e <Т[;Т!>>. T h u s we shall d e n o t e it in t h e n e x t as x[. 

T h e re lat ion (24) gives s imul taneous ly 

&T • B(rt)- • ( i - ьм0) 
h m = . (Jo) 

T-Tro dx A Hit M Q 

W i t h respect t o (11) i t holds 

dx\ _ d / x \ dx\ 1 d / 1 \ x\ 

dT dx \ t - x[(t - 1) / dT M dT \M/ t - x[(t - 1) ' 

dx\ t 1 da;1, 1 AH[ x\ 
г- = . -1 M . (29) 

dT [t - x[(t - 1)]2 M dT .V/2 RT* t - x\(t - 1) 

T a k i n g t h e l imit for T -> To we o b t a i n : 

d T R(Tf

2)
2 

l im = 2 . (1 - tMo) (30) 
T-+T\ dx\ AH\ 

o r 

d T d T 
l im = tM0 l im (31) 

T->Tr

2 dx\ T-+T[ dx\ 

T h e relat ion (27) gives 

dT tR(T[f 
l im = v . (3^) 

T + T[ dx[ AH\ 

W i t h respect t o (29) a n d (32) we h a v e 

dxl t dx\ AH[ 1 AH[ AH[ 

l im — * - = l im l- l- = t ± 1 - = 0 
T + T[ dT [t - t + l ] 2 T-+T* dT R(T[)2 t - t + 1 tR(T[)2 R(T[)2 
a n d hence 

d T 
lim = -f oo . (33) 

T-+T[ dx\ 

I f we are very close above t h e critical va lue of t h e e n t h a l p y of fusion AH[ (see (25)) 

where tM0 = 0 t h e n 

d T 
lim zb 0 for each AH:>. 

T->Tj dx\ 

As a result of t h a t t h e Hquidus a n d solidus curves h a v e a s imilar course regardless 

of t h e va lue of t h e p a r a m e t e r AHl. 

We shall i n t r o d u c e fur ther a r a t i o of t h e l imit values of t h e der ivat ives of h q u i d u s 

a n d solidus curves a t t h e p o i n t T = Tf,. 
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C\T 
lim 

f - ť , da» 1 1 f AH[(T[ -* g*) ] 
& = = = — exp . (34) 

l i m d T Ш в t

 P [ д е д J 
T-»Tjda;J 

The relation (34) does not depend on the magnitude of the enthalpy of fusion AHÍ 
of the second component. An analogous relation for the ratio of the limit values of deri­
vatives at the melting point T[ of the first component equals zero because of eqn (33). 

In the end it may be stated that the relations (32) and (34) allow to determine the 
enthalpy of fusion AH[ of the first component having higher melting point in two different 
ways. This value is not known in many cases at all or only with a low accuracy. For 
the calculation we have to know the temperatures of fusion T[, T\ assuming T[ > TÍ 
and the limit values of the slopes of tangents to liquidus and solidus curves at T = T[ 
or at T = TÍ. The relation (31) is of particular interest. By means of it one is able to 
determine the value AH[ only from the course of liquidus and solidus curves in the vi­
cinity of the melting point TÍ of the second component having a lower melting point. 
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