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The substance of the method of concentration vectors and its application 
to phase diagrams of condensed isobaric and isothermal-isobaric systems 
has been explained. I t has been proved that the application of this method 
gives the possibility rationally to justify several regularities traditionally 
denoted as rules used for the characterization of processes in phase diagrams, 
as e.g. the rule by van Rijn, the triangle, trapezoid, and tangent rules. In 
addition, the method of concentration vectors is successful even when some 
of these rules cannot be applied. Further it provides the possibility to de­
termine the character of crystallization processes occurring in invariant 
points of phase diagrams. 

In the study of phase equilibria in multicomponent condensed systems we often 
encounter with three problems. Firstly, the direction has to be determined, in which 
the figurative point (FP) of the liquid phase coexisting in equilibrium with several 
solid phases moves when the independent parameters of the system are changed. This 
motion of the F P of the liquid phase for isobaric systems is caused by taking the heat 
away. In the case of isothermal-isobaric phase diagrams the motion is caused by remov­
ing one of the components (e.g. water) from the system. 

Another important problem is to determine the character of the process accompany­
ing the above-mentioned motion of the F P of the liquid phase. In principle, the question 
is whether it is a process of the eutectic type 

L «± Si + S2 + S3 + S4 + . . . (A) 

or of the peritectic type, e.g. of the first order 

L + Si ч± S2 + S3 + S4 + . • . (B) 
or of the second order 

L + Si + S2 ч± S3 + S4 + - • •, (G) 

where L is the liquid phase, Si, S 2, etc. denote the solid phases being in equilibrium with 
the liquid phase. 

The third problem concerns the phase diagrams of the systems, in which a reversible 
inversion of the eutectic crystallization according to eqn (A) to the peritectic crystalli­
zation according to eqn (B) or (<7) takes place. The question is to determine the point 
of inversion, i.e. that point on the univariant equilibrium curve, in which one process 
changes to the other. 
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For isobaric systems the first problem is solved by applying the rule by van Rijn 
-van Alkemade ([1], pp. 572 — 573): "The line segment connecting in a phase diagram 
the figurative points of two solid phases, intersects the univariant curve, dividing the 
regions of primary crystallization of these phases in a point which is the (real or unreal) 
.temperature maximum on this uni variant curve." 

Fig. 1. Isobaric phase diagram of a ter- Fig. 2. Isobaric phase diagram of a ter­
nary system with the congruently melt- nary system, in which on the univariant 
ing binary compound Q and the in- curve eE the eutectic crystallization 
congruently melting binary compound R. changes to a peritectic process. The in­

version point Z is marked. 

For the illustration of the use of this rule the projection of the phase diagram of the 
ternary system А—В —С may serve, containing a congruently melting binary compound 
Q and an incongruently melting binary compound R (Fig. 1). In the first case it concerns 
the solid phases С and Q, the primary crystallization regions of which are in contact 
along the curve E1E2. The line segment connecting the FPs of the phases С and Q inter­
sects this curve in the point Mi, being the temperature minimum on the straight line 
segment C—Q and at the same time the temperature maximum on the curve E1E2. 
The point exhibiting these properties is often called the saddle point or the van Rijn 
point ([1], p. 572). Therefore on the curve E1E2 the temperature decreases from the 
point Mi in both directions to points Ei and E2 as shown by arrows in Fig. 1. 

An analogous consideration of the coexistence of the solid phases С and R shows 
that the primary crystallization regions of these phases are in contact along the uni­
variant curve P E 2 . Its extrapolated part intersects the straight line segment C —R 
in the point M2, being the unreal temperature maximum on the curve M2PE2. Thus 
the temperature decreases along the univariant curve from M2 to P and from there 
to E 2 . 

In its original form the van Rijn rule cannot be applied to an isothermal-isobaric 
diagram (usually the systems containing water as one of the components). 

The second problem, namely the determination of the character of processes occurring 
along the univariant equilibrium curves is solved using the following rules: Let the points 
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P and Q be the FPs on. the univariant equilibrium curve L -f As + B s (index " s " de­
notes the solid phase). If the whole triangle APB is a part of the triangle AQB, the 
process shows a eutectic character. If the triangle APB partly overlaps the triangle 
AQB (i.e. if the formation APQB is in general a trapezoid), the process is of peritectic 
nature. These rules may be cleared up by means of Fig. 2. On the whole curve of uni-
variant equilibrium, along which the phases L, A s, and B s coexist in equilibrium, the 
temperature falls from e to E. 

Let P = G and Q = H. Then the triangle AGB forms a part of the triangle AHB 
and therefore the process on the segment PQ is a eutectic one (i.e. L ч± A s + B s). 

For P = К and Q = L the triangles AKB and ALB partially overlap (the points 
AKLB form a trapezoid) and the process running on the segment KL is a peritectic 
one (in the given case L + B s +± A s). 

Both the rules, i.e. that of the "triangle" and that of the "trapezoid" fail, if they 
are applied to two points on the same univariant curve, each of them corresponding 
to the other process (see, e.g. the triangles AGB and AKB, Fig. 2). 

The third problem, namely the determination of the position of the inversion point, 
is solved as follows. From the F P of one of the solid phases being in equilibrium along 
the univariant curve with the liquid phase of variable composition a tangent is laid 
to the univariant equilibrium curve. Then the common point of this tangent and the 
univariant curve (in Fig. 2 marked with Z) is the inversion point searched for. 

All the said regularities, namely, those by van Rijri, the triangle, trapezoid, and tangent 
rules, are the consequence of the lever rule. The same laws can be obtained using the 
concept of the vectors of concentration changes (concentration vectors). I t has to be 
noted that the application of concentration vectors appears to be successful without 
any exception. 

С 

Fig. 3. Isobaric phase diagram of a ter­
nary system containing the binary com­
pound Q with an incongruent melting 
point. On the curves of the univariant 
equilibria the concentration vectors are 
marked belonging to the solid phases 
that coexist with the liquid phase. 

Fig. 4. Isobaric phase diagram of a ter­
nary system, in which the binary com­
pound Q with an incongruent melting 
point exists. The figure represents the 
invariant points E and P expressed by 

vectors. 
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The concept of "composition" or "motion" vectors and their relationship with crystalli­
zation processes has been presented by Ricci ([2], pp. 224, 420). Abramov et cd. ([3], 
p. 394) have used such vectors to elucidate the observed changes in the composition 
of the electrolyte for the production of aluminium during electrolysis. 

The method of concentration vectors in phase diagrams has not yet been systematically 
developed, nor have been demonstrated the possibilities being given by its application. 

In our considerations the concentration vector of a particular constituent is defined 
as an arrow (a line segment), representing in the phase diagram the course of the FP 
of the liquid phase, if the concentration of this constituent in the liquid phase changes. 
The signs " - j - " and " —" denote respectively the concentration increase and decrease 
of the given constituent in the liquid phase. 

Vectors are quantities having both magnitude and direction. The physical meaning 
of the direction of a concentration vector in a phase diagram has been explained. The 
magnitude of a concentration vector may be chosen arbitrarily; it is evident that the 
F P of a liquid phase if determined as the sum of concentration vectors can be situated 
only on univariant curves or invariant points of the given phase diagram. 

For the sake of simplicity let us consider an isobaric phase diagram of a ternary system 
without solid solutions (Fig. 3). 

The liquid phase L coexists along the curve of the univariant equilibrium with two 
solid phases (v = к — f -}- 1 = 3 — 3 4-1 = 1) and the projection of the univariant 
curve is thus given by the vector sum of the concentration vectors of both solid phases, 
e.g. of В and C. 

Apparently there are four possible combinations of these vectors marked as b and с: 
(b, c), (b, —c), ( — b, c), and ( — b, —с). The course of the univariant curve indicates 
that two of these couples are unreal. From the remaining vector couples it may be readily 
found, which of them may be applied to the demanded parameter change of the given 
system. The application of the concentration vectors is schematically shown in Fig. 3. 
Thus e.g. the univariant curve езР, along which the solid phases B 3 and Cs are in. equi­
librium with the liquid phase L, may be realized as the sum of (b) + (c) (at increasing 
temperature) or as that of ( —b) -f- ( — c), when the temperature falls. The same is valid 
for the curves eiE and егЕ. 

С 

/ f a \ Fig. 5. Isobaric phase diagram of a ter-
/ I \ nary system containing one ternary 

/ In \ compound Q with an incongruent melt-
y / ^ ^ — ^ -i \ ing point. The invariant points in the 

A B given system are represented by vectors. 
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The univariant curve PE may be apparently realized as the vector sum of ( — c) -|-
+ ( —q) and since an elimination of the solid phases takes place at decreasing tempera­
ture, the F P of the liquid phase moves from the point P to E. This corresponds to the 

t van Rijn rule. 
In general it holds: if both the vectors have the same signs, the corresponding process 

shows a eutectic character. 
The curve pP may be realized however only as ( — q) + (b), or as (q) + ( — b), res­

pectively. If the two vectors have opposite signs, the general rule holds that the corres­
ponding process exhibits a peritectic character. 

The method of concentration vectors provides significant information also on the 
character of the invariant points in the phase diagrams of systems. For the point E 
(Fig. 4) e.g., the relation holds: ( — a) + ( — b) -f ( — q) = 0, corresponding to the eutec­
tic reaction L E ^± As + B s + Q s . For the point P in the same diagram it holds: 
(-f-b) _j- ( —c) -f- ( — q) = 0, corresponding to the peritectic reaction L P + B s ^ 
5± Cs + Qs. 

Thus if all vectors have the same sign, it is a eutectic process; if the signs are different, 
the crystallization process exhibits a peritectic character. 

When in the phase diagram of the system there is a ternary compound Q with an 
incongruently melting point (Fig. 5). the following cases may arise: 

Point E : ( -b) + ( - с ) -f ( - q ) = 0; process: L E *± B s + Cs + Qs . 

Point P i : ( + o) + ( - с ) + ( - q ) = 0; process: L P l + B s «± Cs + Q s • 

Point P 2 : ( + o) + ( + b) + ( - q ) = 0; process: L P 2 + B s + A s ч± Q s . 

For the invariant point Pi it is a first-order peritectic process. For the point Po it is 
a peritectic process of the second order (a "twofold" peritectic process; [4], p. 160). 

Peritectic processes of the order higher than three cannot exist in a ternary system, 
as it clearly follows from the phase rule of Gibbs. 

Finally let us show the way how the method of concentration vectors solves the third 
problem, namely the transition of the eutectic process to the peritectic along the same 
univariant curve. I t holds for the line eZ, except point Z (Fig. 2), that it is given by the 
sum ( — o) + ( — b). Likewise it holds for the line ZE, except Z, that it equals the vector 
sum ( — a) -f- ( + b). Just in the point Z there exists a single infinitesimally small vector 
( — a) only. Thus the point Z is a common point of the curve eE and the tangent laid 
from point A to this curve. 
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