Infrared spectra of heterocumulenes. III. Vibrational wavenumbers and integrated absorption intensities of the diazo group of some diphenyldiazomethanes

Š. STANKOVSKÝ and Š. KOVÁČ

Department of Organic Chemistry, Slovak Technical University, 880 37 Bratislava

Received 27 February 1973

The influence of substituents on the $v_{as}(\text{CCN})$ bands of diphenyldiazomethanes has been studied. Spectral data of some diphenyldiazomethanes and arenediazonium compounds have been compared. A linear dependence of integrated absorption intensities (log A) of the $v_{as}(\text{CNN})$ and the v(NN)bands, respectively, on Hammett σ_p^+ substituent constants has been found $(\varrho^+ = +0.126 \text{ and } \varrho^+ = -0.42$, respectively). The slope ϱ of this dependence suggests the different nature of the diazo group of both types of the compounds investigated.

Although infrared spectral data of various diazo compounds were reported by several authors [1-7], only the spectrum of diazomethane was interpreted in detail [8]. Other papers dealing with the infrared spectra of diazomethane derivatives with the exception of diazo ketones and diazo esters, report wavenumbers of the stretching vibrational band of the diazo group. *Yates et al.* [1] assigned very strong absorption bands in the i.r. spectra of diazo compounds, such as diazoalkanes, diazo ketones, and diazo esters in the range of $2000-2100 \text{ cm}^{-1}$ to the stretching vibration of the CNN group.

This paper describes the i.r. spectra of six bis-[4-phenyl] substituted diazomethanes (I-VI) and two phenyldiazomethanes (VII and VIII) (Scheme 1).

Scheme 1

Spectra of diphenyldiazomethanes studied have been compared with the spectra of similar compounds - diazonium salts.

Experimental

All diphenyldiazomethanes were prepared by oxidizing the appropriate hydrazones with yellow HgO [9]; phenyldiazomethanes were prepared by the reaction of the respective tosylhydrazones with sodium methoxide according to [10].

Infrared spectra of the compounds studied were recorded with a UR-20 (Zeiss, Jena) instrument. The experimental conditions and the method used in the determination of integrated absorption intensities of the v(NN) bands are described in [11].

Results and discussion

As can be seen from the i.r. spectra of diazomethanes intensive single absorption bands in the range of $2030-2070 \text{ cm}^{-1}$, assigned to the stretching vibration of the NN group are observed (Table 1; Fig. 1). The wavenumber of these bands increases with the increasing electron-withdrawing power of the substituents.

Fig. 1. Infrared spectra of substituted diphenyldiazomethanes. I. (CH₃)₂N; II. CH₃O; III. CH₃; IV. H; V. Cl; VI. Br.

Table 1

Infrared	l spectral	data of	substituted	diphen	yldiazomethanes	and	phen	yldiazomethanes
----------	------------	---------	-------------	--------	-----------------	-----	------	-----------------

No.	\tilde{v}_{\max}	ε	$\Delta v_{1/2}$	$A\cdot 10^{-4a}$	$A \cdot 10^{-4}$
I	2031	501	12.5	2.1	1.7
II	2038	650	13.0	3.3	3.0
III	2039	946	14.0	4.3	4.1
IV	2046	760	16.0	4.2	4.4
V	2046	1015	15.0	5.4	4.9
VI	2049	803	16.0	5.6	5.1
VII	2073	2532	13.0	10.8	
7111	2065	842	12.0	4.2	

a) Values obtained by a direct integrated method; \tilde{v} and $\Delta v_{1/2}$ in cm⁻¹; ε in l mol⁻¹ cm⁻¹; A in l mol⁻¹ cm⁻².

The bands assigned to the stretching vibration of the NN group in benzenediazonium salts are observed at higher wavenumbers than those in diazomethanes. The wavenumber of the NN bonds evidently depends on the nature of the CNN group in both types of the compounds investigated.

One can imagine that diazomethane and its derivatives can exist in the form of some resonance structures, of which structures a and b are predominant (Scheme 2).

These structures were determined on the basis of X-ray studies [12] and dipole moments of the substituted diazomethanes [13]. The wavenumber of the absorption band of diazomethane, which is lower than that of diazonium salts, can be explained on the basis of these structures. It can be assumed that structure d of diazonium salts is less probable than b of diazomethanes in consequence of a distortion of an aromatic system resulting in structure d (Scheme 3).

Therefore the electron density in the NN bond in diazomethane is lower than that in the diazo group of diazonium salts (c) which results in lower wavenumbers of the bands of the v(NN) in diazomethanes.

With any substituted diazomethanes structures e and f, depending on the nature of the substituent attached to the benzene ring, can be assumed (Scheme 4).

In the case of an electron-withdrawing substituent (Y) (e.g. NO₂ group) the structure e plays a predominant role leading to a shift of the $\nu(NN)$ band to higher wavenumbers. In the case of an electron-releasing substituent (e.g. $(CH_3)_2N$, CH_3O groups) a double bond character of the NN group can be expected (f) resulting in a shift in the opposite sense. Similar dependences were observed in the case of the asymmetrical stretching vibration of the NNN group in azides [14]. The wavenumbers of the N \equiv N bonds in diazonium salts [15, 16] are only slightly influenced be electron-withdrawing substituents.

However, electron-releasing substituents cause a large wavenumber shift of these bonds to lower values (Scheme 5).

A very significant shift to lower wavenumbers is observed in compounds possessing substituents favouring structure d in which the diazo group is a part of the cumulative system of double bonds (>C=N=N). The structures d of diazonium salts XI and XII are stabilized by approaching the anion $A^{(-)}$ to the nitrogen atom of the amino and dimethylamino group, respectively (Scheme 6).

Apparent molar absorptivities as well as half-band widths of the $v_{as}(\text{CNN})$ bands of aryldiazomethanes (Table 1) differ from those calculated according to *Ramsay* [17] which are 1.02 times lower. Molar absorptivities of the bands in the spectra of diazoalkanes are approximately two times higher and half-band widths approximately 0.5 times lower when compared with those of benzenediazonium salts.

Integrated absorption intensities of diazoalkanes were determined by an extrapolation method as well as by a direct integration according to Ramsay. Integrated absorption intensities, obtained by a direct integration of the bands (the range of integration was 120 cm^{-1} ; 60 cm⁻¹ on both sides from the maximum of absorption). Integrated absorption intensities of the bands of diazomethanes increased with the increasing electron--withdrawing power of the substituents whereas those of benzenediazonium salts decreased. A linear relationship between log A determined by a direct integration method of the $v_{as}(CNN)$ and v(NN) bands and σ_p^+ substituent constants has been found (for diazomethanes $\varrho^+ = 0.126$ and r = 0.996; for diazonium salts $\varrho^+ = -0.42$ and r == 0.98). The values of the slopes ρ of these relationships point out that integrated absorption intensities of the bands of benzenediazonium salts are more sensitive to the influence of the substituents when compared with those of diazomethanes. Rao et al. [18] reported that integrated absorption intensities of the bands of electron-releasing groups involved, e.g. in phenols, anilines, etc., increased with the increasing electron-withdrawing power of substituents, whereas those of electron-withdrawing groups. e.g. in cyanides, nitro compounds, etc., did the reverse. From our measurements it appears that the diazo group of aryldiazomethanes is electron-releasing in nature, whilst the diazo group of benzenediazonium salts is electron-withdrawing, which is in accord with the high Hammett \oplus

Æ

constant of the $-N \equiv N$ group ($\sigma_p = +1.91$).

The high integrated absorption intensities of the $-N \equiv N$ group in diazonium salts containing the $(CH_3)_2N$ or H_2N groups can be explained by the presence of structure d similar to the structure of quinone diazides [15]. Integrated absorption intensities of the bands in the spectra of these compounds are close to those of compounds containing a typical cumulative system of double bonds, such as carbodiimides, isothiocyanates, etc. [19].

References

- 1. Yates, P., Shapiro, B. L., Yoda, N., and Fugger, J., J. Amer. Chem. Soc. 79, 5756 (1957).
- 2. Hörmann, W. D. and Fahr, E., Justus Liebigs Ann. Chem. 663, 1 (1963).
- 3. Fahr, E., Justus Liebigs Ann. Chem. 617, 11 (1958).
- 4. Fahr, E., Justus Liebigs Ann. Chem. 638, 1 (1960).
- 5. Foffani, A., Pecile, B., and Ghersetti, S., Tetrahedron 11, 285 (1960).
- 6. Fahr, E., Chem. Ber. 92, 398 (1959).
- 7. Miller, F. A., J. Amer. Chem. Soc. 79, 5974 (1957).
- 8. Crawford, B. L., Fletcher, W. H., and Ramsay, D. A., J. Chem. Phys. 19, 406 (1951).
- 9. Bethell, D. and Calister, J. D., J. Chem. Soc. 1963, 3801.
- 10. Closs, G. L. and Moss, R. A., J. Amer. Chem. Soc. 86, 4042 (1964).
- 11. Stankovský, Š. and Kováč, Š., Chem. Zvesti 28, 230 (1974).
- 12. Wheland, G. W., Resonance in Organic Chemistry, p. 181. J. Wiley, New York, 1955.
- 13. Sidgwick, N. V., Sutton, L. E., and Thomas, W., J. Chem. Soc. 1933, 406.
- 14. Sheinker, Y. N. and Syrkin, Y. K., Izv. Akad. Nauk SSSR, Ser. Fiz. 14, 478 (1950).
- Kazitsina, L. A., Ashkinadze, L. D., Vinogradova, L. E., and Reutov, O. A., Dokl. Akad. Nauk SSSR 167, 835 (1966).
- Kazitsina, L. A., Kikosh, B. S., Ashkinadze, L. D., and Reutov, O. A., Dokl. Akad. Nauk SSSR 151, 573 (1963).
- 17. Ramsay, D. A., J. Amer. Chem. Soc. 74, 72 (1952).
- 18. Rao, C. N. R. and Venkataraghavan, E., Can. J. Chem. 39, 1757 (1961).
- 19. Stankovský, Š., Thesis. Slovak Technical University, Bratislava, 1972.

Translated by Š. Kováč