The phase equilibria study in the system $Mg_3(PO_4)_2 - Na_3PO_4$

J. MAJLING

Institute of Inorganic Chemistry, Slovak Academy of Sciences, 809 34 Bratislava

Received 13 December 1972

The system $Mg_3(PO_4)_2 - Na_3PO_4$ was studied by means of DTA, hot-stage microscopy, and X-ray diffraction analysis. The system is of quasi-binary character. There are two ternary compounds in it, $Mg_4Na(PO_4)_3$ and $MgNaPO_4$. The former compound melts incongruently (1165°C) and the latter one decomposes probably in the solid state.

The system $Mg_3(PO_4)_2 - Na_3PO_4$ represents the section through the three-component system $MgO - Na_2O - P_2O_5$. Its study is a part of the investigation on the phase coexistence in the system $MgO - CaO - Na_2O - P_2O_5$. Within the system studied the existing literature data concern only single compounds $Mg_3(PO_4)_2$, $MgNaPO_4$, and Na_3PO_4 .

 $Mg_3(PO_4)_2$ melts, according to *Berak* [1], congruently at 1357°C and undergoes transition at 1055°C. *Sarver, Katnack*, and *Hummel* [2] did not confirm this transition. The crystal structure of $Mg_3(PO_4)_2$ is known [3]. Its powder pattern is given by [3, 4].

 Na_3PO_4 melts congruently too. *Turkdogan* and *Maddocks* [5] determined its melting point and transition by DTA at 1583 and 1474°C respectively.

Osterheld and Bahr [6] determined melting point of Na₃PO₄ by means of hot-stage microscope at the temperature of 1512° C and the transition by DTA at 340° C. Bergman and Shanzharova [7] gave for Na₃PO₄ three transitions at 240, 320, and 420°C; all of them were determined by DTA. Two modifications of Na₃PO₄ have been up to now fully described by their powder diffraction patterns, low temperature-tetragonal modification [8], and high temperature-cubic modification [8, 9].

MgNaPO₄ was described by *Berul'* and *Voskres^onskaya* [10] and *Kaprálik* [11]; in both cases during the study of NaPO₃-MgO system, representing other section through the three-component system MgO-Na₂O-P₂O₅. The authors [10] give for MgNaPO₄ one reaction at 800°C, whereas the author [11] shows DTA curve of MgNaPO₄ on which five endothermic effects exist.

Experimental

The diluted water solutions of $Mg(NO_3)_2$, $NaNO_3$, and $NH_4H_2PO_4$ were used for samples preparation. Individual solutions were mixed together in the volume proportions according to the desired concentrations. $Mg(NO_3)_2$ solution was prepared by dissolving the Mg metal (99.9%) in nitric acid. The solutions of NaNO₃ and $NH_4H_2PO_4$ were obtained by dissolution of NaNO₃ and $NH_4H_2PO_4$ (anal. grade chemicals) in water. The resulting solutions were slowly evaporated. After evaporation, the dry precursors were heated at 600°C to liberate the fluid components and to decompose nitrates. The final heating was accomplished at 800°C after 10 hours.

Slowly cooled samples were analyzed by X-ray powder diffraction. Powder patterns were taken on a Philips 1540 diffractometer (Ni filtered CuK_{α} radiation) at the rate 1°

 $2\Theta/\min$. In some instances the silicon was used as an internal standard ($a_0 = 5.43062$ Å) and the patterns were taken at the scanning rate $1/4^{\circ} 2\Theta/\min$.

Each sample was subjected to DTA on the Netsch apparatus. Analyses were performed during heating at the heating rate 10° C/min. The temperature was measured by Pt/Pt-10% Rh thermocouple. 200 mg of the sample was taken into analysis.

Liquidus temperatures were determined by the direct observation of samples in a hot--stage microscope Griffin—Telin. The microscope is equipped with Pt-5% Rh/Pt-20% Rh thermocouple, which serves as a sample holder and heating element simultaneously [12, 13]. The thermocouple of the microscope was calibrated against melting points of NaCl and K₂SO₄ and the transition (573°C) of K₂SO₄. The reproducibility of temperature measurement was $\pm 5^{\circ}$ C in the case of hot-stage microscope and $\pm 5-7^{\circ}$ C in the case of DTA.

Results and discussion

DTA study

On the basis of DTA results the phase diagram of the system $Mg_3(PO_4)_2 - Na_3PO_4$ was constructed (Fig. 1). The usual abbreviated notation is used in the paper: M - MgO, $N - Na_2O$, $P - P_2O_5$.

Fig. 1. The phase diagram of the system $Mg_3(PO_4)_2 - 2Na_3PO_4$ ($M_8NP_3 - Mg_4Na(PO_4)_3$, $M_2NP - MgNaPO_4$). \triangle hot-stage microscopy; \bigcirc DTA.

The samples which contained more than 50.0 mole % 2Na₃PO₄ exhibited no thermal effects in the whole temperature interval. The temperatures of isothermal reactions in the system were read from the maxima of DTA signals. The liquidus temperatures were deduced from the points at which extrapolated base lines and tangents to the steep-descending portions of peaks intersected. These temperatures are in Fig. 1 denoted by open circles.

According to the phase diagram two ternary phases are present in the system. The first of them, $Mg_4Na(PO_4)_3$ (M_8NP_3), melts incongruently at 1165°C and undergoes a transition at 1005°C. Its chemical composition was deduced from the intensities of endothermic signals accompanying the incongruent melting. The second compound, $MgNaPO_4$ (M_2NP), undergoes transitions at 580, 725, 925, and 990°C. The transition at 990°C was accompanied by a minute thermal effect observed only in the case of three samples. The behaviour of this compound above 990°C has not been as yet clarified. It is possible that already the reaction at 920°C represents the decomposition of Na₃PO₄ in the solid state. The thermal effects associated with the end of a primary field of crystallization were in the case of the sample of MgNaPO₄ composition and the neighbouring samples below the limit of detection. On the DTA curve of Mg₃(PO₄)₂, in agreement with [2] no thermal effect was observed corresponding to the transition of this compound.

X-ray diffraction analysis

The concentrations of samples analyzed on the presence of phases are shown in Table 1. The concentrations are expressed also by the figurative points the samples would attain in the three component system $MgO-Na_2O-P_2O_5$.

In the last colum of Table 1 the identified phases are listed, together with their informatively estimated quantity. The compound $Mg_4Na(PO_4)_3$ was identified in agreement with DTA results. The list of its powder diffraction lines is shown in Table 2.

Table 1

The	results	of X-ray	diffraction	phase	analysis
	in the	system I	$Mg_3(PO_4)_2 -$	-Na ₃ Pe	O_4

Chemical composition [mole % 2Na ₃ PO ₄]	Figurative point in the system $M-N-P$	Identified phases [quantity in %]*		
0	M ₃ P	M ₃ P (100)		
5.11	M ₁₇ NP ₆	M_8NP_3 (60),	M ₃ P (40)	
11.11	M ₃ NP ₃	M_8NP_3 (100)		
22.22	$M_7N_2P_3$	$M_{2}NP$ (60),	M_8NP_3 (40)	
30.61	$M_{27}N_{12}P_{13}$	M ₂ NP (90),	M_8NP_3 (10)	
33.33	M_2NP	M_2NP (100)		
36.36	$M_{21}N_{12}P_{11}$	M_2NP (100)		
44.44	$M_5N_4P_3$	$\alpha - N_3 P$ (100)		
66.66	MN_2P	$\alpha - N_3 P$ (100)		
98.00	MN43P50/3	$\alpha - N_3 P$ (100)		

* The quantity of phases identified is of informative character. M – MgO, N – N ϵ_2 O, P – P $_2O_5$.

Table 2

$Mg_4Na(PO_4)_3$				$MgNaPO_4$			
$d_{h \approx l}$ [Å]	I/I_0	d_{hkl} [Å]	I/I_0	d_{hkl} [Å]	I/I_0	d _{hkl} [Å]	I/I_0
7.61	100	2.865	10	4.43	õ	2.23	5
5.84	40	2.763	20	4.22	2	2.13	2
5.03	10	2.727	3	3.92	80	2.07	2
4.67	2	2.658	30	3.83	5	1.96	5
4.125	75	2.622	3	3.53	2	1.89	2
3.975	15	2.559	5	3.07	70	1.86	3
3.760	3	2.511	40	2.79	40	1.79	15
3.573	5	2.466	30	2.52	100	1.77	5
3.539	4	2.448	15	2.45	2	1.70	5
3.164	40	2.335	5	2.39	2	1.65	10
3.089	5	2.268	5	2.32	20	1.64	5
3.003	60	2.181	10	2.27	5	1.59	-

The list of X-ray powder diffraction lines for Mg4Na(PO4)3 and MgNaPO4

The sample of composition corresponding to MgNaPO₄, also in agreement with DTA results, represented an individual phase and accordingly in its powder pattern no lines of Mg₄Na(PO₄)₃ and Na₃PO₄ were present. Modification changes of MgNaPO₄ are reversible [11] and the list of the diffraction lines in Table 2 represents the low-temperature modification.

It was found out that small amounts of $Mg_3(PO_4)_2$ $(1-2 \text{ wt } \frac{O}{O})$ stabilize Na_3PO_4 in its cubic modification (α -Na₃PO₄). This modification can be stabilized also by additions of MgO [9] and CaO. The powder pattern given for Na₃PO₄ by [14] represents also this modification of Na₃PO₄.

In the concentration region of the system from 66.7 mole % 2Na₃PO₄ the cubic modification of Na₃PO₄ is present as the only crystalline phase (α -Na₃PO₄ s_s). In the concentration region 50.0-66.7 mole % 2Na₃PO₄ one phase is also present, which is, as seen from the profiles of diffraction lines, characterized by the lesser degree of ordering. The powder pattern characteristic of this phase includes all diffraction lines of the cubic modification of Na₃PO₄ and a few of the other, unidentified lines of low intensities.

Hot-stage microscopy

The equilibrium between primary crystalline phases and the melt was determined by means of a hot-stage microscope. According to the results achieved the system appeared to be stable only in its concentration region from $Mg_3(PO_4)_2$ to the eutectic composition (25 mole % 2Na₃PO₄).

In this concentration region liquidus temperatures (triangles in Fig. 1) are in sufficient agreement with DTA results. In the concentration range of the system, from the cutectic composition to Na_3PO_4 , it was not possible to measure the equilibrium liquidus temperatures, but only the liquidus temperatures in their instantaneous values, depending on the heating rate of samples. The system in this concentration region does not satisfy the requirements imposed on the condensed systems and the more exact results can be achieved when conducting the experiments within a closed system.

The liquidus temperatures determined in this region during rapid heating of samples

(heating rate $20-50^{\circ}$ C/s) were continuously lowered, because of the change in chemical composition taking place as a result of evaporation. From the lowering of liquidus temperatures the preferred evaporation of the melt constituents with a stoichiometry close to that of Na₃PO₄ can be judged.

The primary crystalline phase $(\alpha$ -Na₃PO₄) exhibited in the whole concentration region the same character; optical isotropy and skeletal crystal growth.

The melting point temperature of the pure Na_3PO_4 was, in agreement with Osterheld and Bahr [6], determined at 1510°C.

References

- 1. Berak, J., Rocz. Chem. 32, 17 (1958).
- Sarver, J. F., Katnack, F. L., and Hummel, F. A., J. Electrochem. Soc. 105, 962 (1959).
- 3. Nord, A. G. and Kierkegaard, P., Acta Chem. Scand. 22, 1466 (1968).
- Joint Committee Powder Data File. Card No. 11-235, 1845 Walnut St., Philadelphia, Pennsylvania 19103.
- 5. Turkdogan, C. T. and Maddocks, W. R., J. Iron Steel Inst. (London) 172, 6 (1952).
- 6. Osterheld, R. K. and Bahr, E. W., J. Inorg. Nucl. Chem. 32, 2539 (1970).
- 7. Bergman, A. G. and Shanzharova, A. I., Zh. Neorg. Khim. 15, 1708 (1970).
- 8. Palazzi, M. and Rémy, F., Bull. Soc. Chim. Fr. 8, 2795 (1971).
- 9. Majling, J., Proceedings of the III. Conference on Refractory Materials. High Tatras, Czechoslovakia, 1970.
- Berul', S. I. and Voskresenskaya, H. K., Izv. Akad. Nauk SSSR, Ser. Neorg. Mat. 4, 2129 (1968).
- 11. Kaprálik, I., Chem. Zvesti 25, 272 (1971).
- 12. Welch, J. H., J. Sci. Instr. 31, 458 (1954).
- 13. Welch, J. H., J. Sci. Instr. 38, 402 (1961).
- 14. Corbridge, D. E. C. and Tromans, F. R., Anal. Chem. 1958, 1102.

Translated by J. Majling