Copper(II) complexes with organic ligands. XV. Magnetic properties of copper(II) benzoate complexes of heterocyclic N-oxides

M. MELNÍK* and J. KRÄTSMÁR-ŠMOGROVIČ

Department of Inorganic and Organic Chemistry, Faculty of Pharmacy, Komenský University. 880 24 Bratislava

Received 3 October 1972

Copper(II) benzoate complexes of composition $\text{Cu}(\text{C}_6\text{H}_5\text{COO})_2\text{L}$ (L = pyridine-N-oxide, quinoline-N-oxide, or some their methyl derivatives) have even at room temperature markedly lower magnetic moments than are the spin values corresponding to Cu^{2+} ions. Their magnetic behaviour studied in the temperature range 93-303 K is typical for antiferromagnetism, with the Néel temperature $T_m = 268 \pm 12$ K. From equilibrium constants of the singlet-triplet interaction the values of enthalpy (ΔE^0) and entropy (ΔS^0) were estimated. Magnetic properties of the studied complexes indicate that they belong to the copper(II) carboxylate complexes with a binuclear bridged structure. Copper(II) acetate monohydrate is a typical example of this type.

The donor oxygen atom of heterocyclic N-oxides often acts as a monoatomic bridge enabling the strong magnetic interaction of the superexchange type between Cu^{2+} ions [1-3]. For example, the binuclear complex $[\operatorname{Cu}_2\operatorname{Cl}_4(\operatorname{pyox})_2]$ (pyox = pyridine-N-oxide) has magnetic moment $\mu_{eff} = 0.62$ B.M. (T = 293 K) and the value of the singlettriplet separation |2J| = 720 cm⁻¹ (2.06 kcal mol⁻¹) [4] derived from the temperature dependence of its magnetic susceptibility. However, the copper(II) acetate complexes $\operatorname{Cu}(\operatorname{Ac})_2(\operatorname{pyox})$ and $\operatorname{Cu}(\operatorname{Ac})_2(\operatorname{quinox})$ (quinox = quinoline-N-oxide) [4, 5] have the values of the room-temperature magnetic moments and the singlet-triplet separation common to binuclear copper(II) carboxylate complexes [1] of the copper(II) acetate monohydrate type [6]. Therefore the bridge function of acetate ions and the monodentate bond of pyox or quinox at terminal positions of the binuclear structural unit have been assumed in these complexes [4, 5].

Recently [7] we described the preparation of copper(II) benzoate complexes Cu(benz)₂L. where L = pyridine-N-oxide, quinoline-N-oxide, or some their methyl derivatives. The observed magnetic moments of the complexes were $\mu_{\text{eff}} = 1.40 \pm 0.02$ B.M. (room temperature), absorption bands of their electronic spectra were at $\lambda = 370-380$ nm (shoulder) and at $\lambda = 720-750$ nm [7]. From their mentioned properties we assumed that the prepared complexes Cu(benz)₂L belong to the group of copper(II) carboxylate binuclear complexes with the bridged structure of the copper(II) acetate monohydrate type. To verify our conclusions we further studied the temperature dependence (T == 93-303 K) of the magnetic behaviour of the complexes Cu(benz)₂L.

^{*} The present address: Department of Inorganic Chemistry, Slovak Technical University, 880 37 Bratislava.

Experimental

The copper(II) benzoate complexes of composition $Cu(benz)_2L$ (L = pyridine-N-oxide, isomeric picoline-N-oxides, 2,6-lutidine-N-oxide, 2,4,6-collidine-N-oxide, quinoline-N-oxide, quinaldine-N-oxide, and lepidine-N-oxide) were prepared by treating the corresponding N-oxide (in excess) with the adduct of copper(II) benzoate and benzoic acid ($Cu(benz)_2$ · Hbenz), in the hot n-butanol solution [7].

Magnetic susceptibilities of the prepared complexes were determined by the Gouy method in the temperature range 93-303 K, intensities of magnetic field between 1600 and 6000 Oe, using an available instrument (Newport Instruments Ltd.). Copper(II) sulfate pentahydrate was used as a standard [8] and the determined molar susceptibilities were corrected for diamagnetism by means of Pascal's constants [9]. Magnetic moments were calculated from the formula

$$\mu_{\rm eff} = 2.83 \left[(\chi'_{\rm M} - N\alpha)T \right]^{1/2},$$

where $N\alpha$ is the temperature independent contribution to the paramagnetism per gramion of Cu²⁺. The "best fit" values, resulting from the *Bleaney-Bowers* equation [10], were inserted for $N\alpha$ (Table 2). The found magnetic data of the complexes Cu(benz)₂L are summarized in Table 1.

Results and discussion

The magnetic properties of the studied copper(II) benzoate complexes with heterocyclic N-oxides are in general very much alike. The magnetic moments at room temperature (≈ 1.4 B.M.) indicate marked magnetic interaction between Cu²⁺. The found molar susceptibilities are independent of the magnetic field intensity but dependent on temperature, which is typical for antiferromagnetism. The paramagnetic triplet level increases, the diamagnetic singlet level decreases; therefore the values of χ'_{M} increase with increasing temperature, reaching their maxima (Néel temperature) at $T_{\rm m} =$ $= 268 \pm 12$ K (Table 2). For copper(II) acetate monohydrate $T_{\rm m} = 255$ K [8, 11]. Further rise of temperature above $T_{\rm m}$ results in a decrease of χ'_{M} of the complexes.

The experimental values of χ'_{M} of the studied complexes at several temperatures were compared with the values calculated by the least-squares method from the singlet-triplet equation [10]:

$$\chi'_M = rac{g^2 N eta^2}{3kT} ~~ rac{1}{1+rac{1}{3} \exp{(-2J/kT)}} + Nlpha.$$

Calculations were performed on an ELLIOTT 803 B computer with ALGOL programme. In the course of the "best fitting" procedure the values of singlet-triplet separation -2J, the electronic splitting factor g, and the temperature independent paramagnetism of copper(II) ion $N\alpha$ were used as variable quantities (Table 2).

Good agreement between the experimental and calculated molar susceptibilities of the studied complexes in the whole temperature range was achieved by the described method (Table 1).

The found values of singlet-triplet separation of the studied copper(II) benzoate complexes $|2J| = 298 \pm 14 \text{ cm}^{-1}$ are in a range characteristic of the binuclear copper(II) carboxylate complexes of the bridged structure [1, 12]. For copper(II) acetate monohydrate the value $|2J| = 286 \text{ cm}^{-1}$ was found from magnetic data [13].

Table 1

Magnetic properties of the copper(II) benzoate complexes $Cu(benz)_2L$ in the range 93-303 K

L	T	100	ZM	· 10 ⁶	μ _{eff} [B.M.]	$K_{ m eq}$
	[K]	$\chi_{\rm g}\cdot 10^6$	exp.	calc.		
Pyridine-N-oxide	93	0.13	246	243	0.40	0.035
1 jindino 11 oktor	123	0.70	474	471	0.65	0.098
	153	1.16	660	662	0.87	0.191
	183	1.10	786	786	1.04	0.297
	213	1.64	852	853	1.17	0.409
	243	1.72	885	881	1.28	
	$\frac{243}{273}$	1.72	889	884		$0.533 \\ 0.644$
	213				1.36	
	293 303	$1.69 \\ 1.67$	$873 \\ 865$	877 872	$\begin{array}{c} 1.39 \\ 1.41 \end{array}$	$0.693 \\ 0.727$
	0.0	0.99	904	200	0.90	0.020
2-Methylpyridine-	93	0.23	304	290	0.36	0.029
-N-oxide	123	0.62	469	483	0.57	0.078
	153	1.08	656	659	0.78	0.150
	183	1.39	784	782	0.96	0.258
	213	1.55	853	854	1.10	0.368
	243	1.64	890	890	1.21	0.481
	273	1.66	901	900	1.29	0.586
	293	1.64	893	899	1.33	0.647
	303	1.63	886	895	1.35	0.675
3-Methylpyridine-	93	0.22	300	289	0.36	0.030
-N-oxide	123	0.64	474	477	0.57	0.078
	153	1.06	649	649	0.78	0.15
	183	1.39	784	772	0.96	0.26
	213	1.53	846	846	1.09	0.36
	243	1.63	886	883	1.20	0.475
	273	1.65	894	895	1.28	0.580
	293	1.63	886	894	1.32	0.639
	303	1.61	878	890	1.33	0.658
4-Methylpyridi	93	0.24	306	292	0.36	0.030
-N-oxide	123	0.63	470	479	0.56	0.030
-47-02100	123	1.06	650	479	0.50	0.073
	153	1.36	050 775	774	0.95	0.153
	213	1.56	850	848	1.09	0.254
	243	1.64	888	885	1.20	0.476
	273	1.66	900	897	1.28	0.580
	293	1.64	890	896	1.32	0.63
	303	1.62	886	893	1.34	0.678
2,6-Lutidine-N-oxide	93	0.07	253	252	0.42	0.037
	123	0.66	508	503	0.69	0.10
	153	1.13	708	706	0.92	0.20
	183	1.41	828	834	1.09	0.31
	213	1.58	900	899	1.23	0.44
	243	1.63	924	923	1.33	0.559
	273	1.62	920	922	1.41	0.675
	293	1.60	912	912	1.45	0.743

$ \begin{bmatrix} \mathbf{K} \end{bmatrix} & exp. & calc. & [\mathbf{B}, \mathbf{M}_1] \\ \hline \\ 2,4,6-Collidine- & 93 & 0.06 & 266 & 265 & 0.42 \\ -N-oxide & 123 & 0.64 & 523 & 519 & 0.70 \\ 153 & 1.06 & 708 & 723 & 0.91 \\ 183 & 1.39 & 855 & 852 & 1.10 \\ 213 & 1.55 & 925 & 918 & 1.24 \\ 243 & 1.58 & 938 & 942 & 1.33 \\ 273 & 1.59 & 942 & 941 & 1.41 \\ 293 & 1.57 & 934 & 932 & 1.46 \\ 303 & 1.55 & 925 & 927 & 1.48 \\ \hline \\ Quinoline-N-oxide & 93 & -0.12 & 224 & 231 & 0.41 \\ 123 & 0.58 & 494 & 483 & 0.69 \\ 153 & 1.01 & 687 & 687 & 0.92 \\ 183 & 1.28 & 809 & 814 & 1.09 \\ 213 & 1.42 & 870 & 879 & 1.22 \\ 243 & 1.47 & 896 & 903 & 1.32 \\ 273 & 1.49 & 902 & 902 & 1.40 \\ 293 & 1.47 & 896 & 903 & 1.32 \\ 273 & 1.49 & 902 & 902 & 1.44 \\ 303 & 1.46 & 890 & 888 & 1.45 \\ \hline \\ Quinaldine-N-oxide & 93 & -0.03 & 229 & 227 & 0.41 \\ 123 & 0.48 & 470 & 475 & 0.68 \\ 153 & 0.92 & 672 & 680 & 0.91 \\ 183 & 1.22 & 815 & 810 & 1.09 \\ 213 & 1.36 & 877 & 879 & 1.22 \\ 243 & 1.42 & 908 & 906 & 1.33 \\ 273 & 1.41 & 905 & 907 & 1.41 \\ 293 & 1.40 & 897 & 898 & 1.45 \\ \hline \\ Lepidine-N-oxide & 93 & 0.10 & 292 & 291 & 0.38 \\ 123 & 0.55 & 500 & 501 & 0.61 \\ 153 & 0.87 & 652 & 684 & 0.80 \\ 183 & 1.21 & 807 & 807 & 1.01 \\ 213 & 1.35 & 873 & 877 & 1.14 \\ 243 & 1.44 & 905 & 908 & 1.24 \\ 273 & 1.45 & 918 & 914 & 1.32 \\ \hline \end{cases}$	L	T	106	Xm .	106	μ _{eff} [B.M.]	K _{eq}
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		[K] χ _g ·10	χ _g · 10°	exp.	calc.		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5-Collidine-	93	0.06	266	265	0.42	0.037
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-oxide	123	0.64	523	519	0.70	0.109
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		153	1.06	708	723	0.91	0.199
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		183	1.39	855	852	1.10	0.321
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		213	1.55	925	918	1.24	0.443
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		243	1.58	938	942	1.33	0.550
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		273	1.59	942	941	1.41	0.672
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		293		934	932		0.745
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				925	927		0.766
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	oline-N-oxide	93	-0.12	224	231	0.41	0.035
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							0.109
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							0.205
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							0.317
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							0.431
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							0.545
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							0.658
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							0.739
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							0.743
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	aldine-N-oxide	93	-0.03	229	227	0.41	0.035
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	and the state of the						0.102
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							0.199
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							0.133
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							0.427
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							0.427
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							0.661
303 1.39 893 894 1.47 Lepidine-N-oxide 93 0.10 292 291 0.38 123 0.55 500 501 0.61 153 0.87 652 684 0.80 183 1.21 807 807 1.01 213 1.35 873 877 1.14 243 1.44 905 908 1.24 273 1.45 918 914 1.32							0.732
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							0.732 0.767
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Lepidine-N-oxide	93	0.10	292	291	0.38	0.032
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							0.082
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							0.162
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							0.102
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							0.395
273 1.45 918 914 1.32							$0.395 \\ 0.504$
							0.615
903 143 000 010 196		293	1.43	909	914 910	1.32	0.675
303 1.45 909 910 1.36 1.36 1.38							0.697

Table 1 (Continued)

 K_{eq} is the equilibrium constant of the singlet-triplet interaction.

The values of g = 2.11-2.23 and $N\alpha = 0-150 \times 10^{-6} \text{ cgs mol}^-$ for complexes $Cu(benz)_2L$ (Table 2) obtained by the "best fitting" procedure from the temperature dependence of their magnetic data show a relatively large variance. Such a variability of these quantities is rather improbable with regard to the assumed identical structure of the studied $Cu(benz)_2L$ complexes, all of them being formed by the same anionic and very similar molecular ligands. However, we have to take into account that the

Table 2

L	$T_{\rm m}$	2J		a	$Nlpha\cdot 10^6$	⊿H⁰	ΔS^{0}
	⊥ m	[cm ⁻¹]	[kcal mol ⁻¹]	g	[cgs mol ⁻¹]	[cm ⁻¹]	[e.u.]
Pyridine-N-oxide	264	293	0.84	2.17	42	285	2.1
2-Picoline-N-oxide	277	308	0.88	2.12	140	296	2.1
3-Picoline-N-oxide	280	312	0.89	2.11	145	292	2.1
4-Picoline-N-oxide	280	312	0.89	2.11	150	296	2.1
2,6-Lutidine-N-oxide	256	285	0.815	2.22	16	284	2.2
2,4,6-Collidine-N-oxide	256	285	0.815	2.23	28	284	2.2
Quinoline-N-oxide	256	285	0.815	2.22	0	285	2.1
Quinaldine-N-oxide	260	289	0.83	2.23	0	288	2.2
Lepidine-N-oxide	268	299	0.855	2.14	115	293	2.1

Values of the Néel temperature, the singlet \rightleftharpoons triplet separation, the electronic splitting factor, the temperature independent paramagnetism of Cu²⁺, enthalpy and entropy of the Cu(benz)₂L complexes

experimental magnetic data may be inaccurate due to the presence of mononuclear paramagnetic impurities, often proved in similar complexes by e.p.r. method [12]. Thus it seems to be of no use to seek a physical meaning of the observed variability of gand $N\alpha$; similar conclusion has been drawn in connection with the applicability of the "best fitting" procedure using several variables also in another work [14]. In spite of this limitation the found g and $N\alpha$ values are not at variance with the assumed binuclear bridged structure [7] of the studied Cu(benz)₂L complexes. The next subject of our work will be to verify the reliability of the g and $N\alpha$ values by other methods.

Equilibrium constants of the singlet \rightleftharpoons triplet interaction of the studied complexes were calculated from magnetic data as described in [15]. Molar fraction of both the singlet and the triplet states of Cu(benz)₂L molecule were calculated from the experimental magnetic moments, since the actual magnetic moment of the singlet state (S=O) is 0.0 B.M. and magnetic moment of the triplet state is given by the formula $\mu_{\text{eff}} =$ $= g[S(S + 1)]^{\frac{1}{2}}$. The found values of equilibrium constants for all the complexes are summarized in Table 1.

The values of enthalpy (ΔH^0) and entropy (ΔS^0) were estimated from diagrams of equilibrium constants of the singlet-triplet interaction, in which $\ln K_{eq}$ was plotted against T^{-1} or $RT \ln K_{eq}$ against T. The results are listed in Table 2. Graphically estimated ΔH^0 are in very good agreement with the values of the singlet \rightleftharpoons triplet separation |2J| of the complexes $Cu(benz)_2L$ evaluated by means of the Bleaney – Bowers equation from magnetic data. The found entropies (ΔS^0) are also in fair agreement with the expected value $R \ln 3 = 2.2$ e.u., where 3 is the degeneracy ratio assuming that the only contribution is that from the electronic entropy. The magnetic properties of the complexes together with their temperature dependences thus support the assumption that the studied $Cu(benz)_2L$ complexes belong to a group of copper(II) carboxylate complexes characterized by binuclear structure of the type of copper(II) acetate monohydrate. After this scheme, copper(II) ions in the structural units $[Cu_2(benz)_4L_2]$ are bridged in pairs by carboxylic groups of benzoate ions while the molecules of heterocyclic N-oxides are bonded through oxygen donor atoms in the axial terminal positions.

References

- 1. Kato, M., Jonassen, H. B., and Fanning, J. C., Chem. Rev. 64, 99 (1964).
- 2. Garvey, R. G., Nelson, J. H., and Ragsdale, R. O., Coordin. Chem. Rev. 3, 375 (1968).
- 3. Watson, W. H., Inorg. Chem. 8, 1879 (1969).
- Gruber, S. J., Harris, C. M., Kokot, E., Lenzer, S. L., Lockyer, T. N., and Sinn, E., Aust. J. Chem. 20, 2403 (1967).
- 5. Kohout, J. and Krätsmár-Šmogrovič, J., Chem. Zvesti 22, 481 (1968).
- 6. Van Niekerk, J. N. and Schoening, F. R. L., Acta Crystallogr. 6, 227 (1953).
- 7. Krätsmár-Šmogrovič, J. and Melník, M., Z. Naturforsch. 24B, 1479 (1969).
- 8. Figgis, B. N. and Nyholm, R. S., J. Chem. Soc. 1959, 331.
- Earnshaw, A., Introduction to Magnetochemistry, p. 4-8. Academic Press, London, 1968.
- 10. Bleaney, B. and Bowers, K. D., Proc. Roy. Soc. (London) A214, 451 (1952).
- 11. Mookherji, A. and Mathur, S. C., J. Phys. Soc. Jap. 18, 977 (1963).
- Lewis, J., Mabbs, F. E., Royston, L. K., and Smail, W. R., J. Chem. Soc. A1969, 291.
- 13. Figgis, B. N. and Martin, R. L., J. Chem. Soc. 1956, 3837.
- 14. Jotham, R. W. and Kettle, S. F. A., Inorg. Chem. 9, 1390 (1970).
- 15. Hatfield, W. H., Piper, T. S., and Klabunde, U., Inorg. Chem. 2, 629 (1963).

Translated by F. Kopecký