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Analysis of equations for calculation of liquidus curves in a binary simple
eutectic system is performed. The equation of the slope of tangent to the
liquidus curve in the melting point is derived and the relationship to the
Stortenbeker correction factor is shown. Character of the liquidus curve
with regard to its concavity or convexity with respect to the concentration
axis is discussed. It has been found that convex parts of liquidus curves
with regard to the concentration axis occur much more frequently in the
ionic systems.

1. Analysis of equations for calculation of liquidus curves in a binary system.
General rules

Let us consider a simple eutectic system Q@ —Z; for the activity of the first com-
ponent along the liquidus curve the following is valid
AHY aT,

dlnag =
5

(1)

where AHf, is the molar enthalpy of melting of the component @ at T,
R is the universal gas constant per mole,
Tq is temperature of the primary crystallization of the substance @ from the
liquid solution @ + Z, wherein the activity of the substance @ ecquals aq.

Let the solution be ideal (¢; = @:), and AHf, = const; integrating the equation
(I) we obtain Le Chatelier —Schroder equation A

rf
In xy = AHQ . [% s _L:I (2)
R TQ TQ

where T is the temperature of the melting point of the pure substance Q.
Rearranging the equation (2) we get

AHS,
To=—2 — (3)
483 — RInx,
AHS
where ASf = fQ is the molar entropy of melting of the component Q.
Tq
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Derivating equation (3) with respect to z¢ and limiting the new equation for
zq — 1 we get
daT R[TL12
g 29 o BTGl = K'd (4)
zo—>1 d.’Z:Q AHfQ

where the quantity KY' will be called the constant of thermic depression of the
substance Q.

In case that the solution is not ideal we have to write the equation (3) as follows

Y
Tq—— _— (8)
ASZ — Rlna,

2. Determination of slopes of tungents to the liqguidus curve
in the point Ty = T
2.1. Systems with one common ion

Let us consider the binary system MyA,—N,A;. We assume a complete dissociation
of the components
MpA; — pM™) + gAO),
NrA; — rN& 4 tAC),

Let the mole fractions of the first and second component be x; and 22, respectively.
Then for the activities of the components the following is valid:

am,a, = [i__.]p, (6)
r+z(p — 1)
7T, v
an,a, = [—] . (7)
P + @a(r — p)

Substituting the equation () in the equation (5) we get the following expression
for the dependence of the temperature of primary crystallization of the first com-
ponent 7'; on the composition

AHE
7, = ! 2 (8)
ASf — RIn [—px—‘——]
r 4 a(p —7)
Then
£ Tf 2
lim 4y =rR a8, =7 RT3 (9a)
z@>1  dw, [4s8f12 AHY
or
ar
li L — r KY. (9b)
T, >1 dxl
810
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By analogy we can write for the second component

dar, R[T%)?
lim —2=p. [Z]=me.

P (10)
z>1 da, AHE

2.2. Systems without a common ton
Let us consider the binary system MyA,—N,B;; the components should dissociate
completely according to the equations
MpA; — pME 4+ gA),
N,B; — rN 4 tA).

Let the mole fractions of the substances MyA, and N, B; be #; and z:, respectively.
Then, according to equation (1) in [1]

px, 2 q, ?
am,a, = [—] . [—-————] i (11)
7+ @ (p — 1) t+ xy(g — )
¢
g, = [ 7, ]7. [ lz, ] ) (12)
P + Tolr — p) q + z(t — q)

Substituting the activity from the equation (11) derivating the equation (), into
equation (), and limiting z; - 1, we get

k3

ar R [T%]?
lim 1=(7'+t)-g=(r+t)-K‘1d (13)
z,>1 d.’L‘l A 1
and by analogy for the second component
T R[TL®
lim S (p 4 g SEE (54 g Y (14)
Te>1 dl‘z g
Derivating equation (9) with respect to x; we get
1 dag
R4H. = . 2%
ar; a; ax; (15)

da; (48f — R In a,)?

Limiting equation (15) for z; — 1 (when 2; = «¢;), we obtain

ar,  R[T da;
Jim 9L RIGE . da (16)
z>1 dx; AH‘; -1 da;
and
dr, da;
lim L = K. im (17)
Ti>1 dxi -1 d.‘l:i

The equation (17) has the general validity: the slope of the tangent to the liquidus
curve of the sth component in the point 7% is determined by the product of the
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constant of thermic depression and of the limiting coefficient of this component.
In the special case of an ideal ionic solution, the limiting coefficient is identical with
the corresponding Stortenbeker correction factor.

In our considerations we assume the activity a; to be the function of concentration
x; only, and not that of temperature as well. Incorrectness due to this assumption
disappears at the limiting transition x; — 1.

From this standpoint the equations (9a, 9b), (10), (13), (14), similarly as equations
(14) to (17) reported by [1] justify introducing of this empirical Stortenbeker factor.

With regard to the definition of cryoscopic constant K$* [2, p. 246], we can write

Mi
1000

Ky = Kit-

where M; is the molecular weight of the ith .component. The usual expression for
temperature drop of primary crystallization of the substance ¢, which forms together

with the substance Z the solution of the first kind, is as follows .
wa. Mo
AT, = K§ - my; = Kg' - my (my — 0) (18)

1000

(mz = molality of the substance Z in the solution @ —Z.
When the system @ —Z is an ionic solution, then, in general (for mz — 0) the
following holds

gt i da,
AT, = Kg cmy - kye = K&r - my - lim —— (19)
zo—>1 dch
and
M, da,
AT, = K& ¢ . iny - lim — (20)
1000 zo->1 de

3. Determination of the character of liqguidus curves
m a binary system

3.1. The components form an ideal solution

The character of liquidus curves of simple eutectic systems depends greatly on
whether these curves are convex or concave with regard to the concentration axis.

As to the ideal systems, this question has been satisfactorily solved [3, p. 360];
from the equation for the liquidus curve of the ith component it follows that

d*T; R AH{(— AS{ + RInz; + 2R)
da? @} A8 — R In ;)

(21)

From the condition of existence of inflexion point and with regard to the fact
that the mole fraction x; has a physical meaning only in the interval (0; 1), it follows

A8,
In(z;)inn = = 2 (22)
R

2
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Substituting in equation (3) for (x;)inn from equation (22) we find that

AHE
(Ti)innn = R (23)

and that for the ratio 7% : (7;)inn it is valid

Tt 2R
=— (24)
(Tiner ¥ H
Since In(x;)inn < 0, then
ASE< 2R. (25)

The course of the liquidus curve depends on the fact that, the condition of equation
(22) being satisfied, the part of the liquidus curve within the interval (zipg, 1) is
convex with regard to the concentration axis and only the part for x < xipn becomes
concave, supposing, naturally, that there is a real inflexion point on the liquidus
curve of the ith substance, 7.e. that Tg < Tingn -

Karapetjanc’s statement [4, p. 267], that the liquidus curves in ideal binary
system can be only concave with regard to the concentration axis z, is evidently
erroneous.

3.2. The components form an ideal solution
3.2.1. Systems with a common ion

We consider a binary system MpA;—N;A, which dissociates completely to ions
M), N, AG) and N¢). The activities of components are given by equations (6)
and (7). Substituting expression (6) in the equation of liquidus curve (5), determining
further the second derivative, i.e. the expression d27';/da? and putting it egual to
zero we get after rearrangement

px,

[r + 2(p — r)z,] - [R:D In
T+ (p— 1,

- AS§:| + 2R rp = 0. (26)

This transcendental equation with regard to x; has a simple solution for these
cases when p = r; then we can write

ASE
In(2)inn = —% — 2 (27)-
Rp

and from the condition that (z1)ipn < 1 it follows

A8t < 2R p. (£8)
Further it is valid that
AH!
(T = I (29)
2R p
and
Tt 2R
1 _ P (30)

(Tl)infl ASE

Analogous relations are also valid for the second component.
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3.2.2. Systems without a common ion

Activities of components of ideal ionic system MyA, and N, B; which are completely
dissociated to ions M(+), N(+), A=) and B(-) can be calculated with the aid of equa-
tion (11) and (12).

Substituting the equation (11) in (5) and after double derivation we determine
from the condition d27';/da? = 0 under the simplifying assumption that p = r and
q = t, the following equation

2R(p + q) — 4SS + (p + ¢) R In(x)yy = 0.
Then we find that

ASE
I han = ———— e 8 (31)
R(p + 9q)
From the condition that (x;)inn < 1 it follows
A8t < 2R(p + q). (32)
Further we find that
AHE
(T1hot = ————— (33)
2R(p + q)
and
T 2R
1 _ 2R(p+q) (34)
(T'y)1nn1 A48%

Analogous relations are valid for the second component.

4. Discussion of the character of liquidus‘ curves
in binary systems

Convex parts (with regard to the concentration axis) and the existence of inflexion
point on the liquidus curves of components of a system constitute their character-
istic features. A necessary and sufficient condition for occurence of a convex part,
supposing the system behaves as an ideal system, is the relation

AST < 2R. (35)
When, moreover
Tian > Te

where T'g is temperature of the eutectic point in the given system, then real inflexion
point occurs on the liquidus curve and the convex course of the liquidus curve
changes and becomes concave. Most alkali metals and alkali earth metals do not
satisfy the condition of equation (35). Thus, e.g., the values of ASf for all alkali metal
halides range from 4.72 to 6.27 cal deg~! mole~1 ([5] p. 184). Substances which
occur as additives or admixtures in the aluminium electrolytes have AS{ greater
than 2R; thus, e.g. A8f,5, = 4.3 cal deg~! mole-1, as reported by Delbove [6], and
5.8 according to Rogers et al. [7], ASier, = 9.0 [8], 48%as0. = 4.9 [5] etc. Very
high values of ASf are reported for both cryolites, ASf; 1w, = 19.4 [9], 485 uaw, =
= 20.9 [10]. This explains why on the phase diagram of these substances with
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substances which have only one non-common ion, as far as they behave at least
approximately as ideal, the convex shape does not exist.

The situation is altogether different when there are substances which have two
or more kinds of different ions. Let us consider a system MsA —NyA. Then, according
to equation (28), a convex part of the liquidus curve can exist only when the following
inequality is satisfied

ASf < 2R p = 4R

and this condition is satisfied by most inorganic substances (by all above mentioned
substances. except LigAlF; and NagAlF¢). Thus it is obvious that for p (or i§%) > 2
the condition for the existence of an inflexion point will be satisfied, too.

Let us consider the liquidus curve of MgFs in the simple eutectic system
LigAlFg—MgFy. If LigAlF, would form non-dissociated molecules only, then no
inflexion points would occur on the liquidus curve of MgFy. However, it is well-
-known that LigAlFg dissociates in these conditions most probably according to the
following scheme

Li;AlF, — 3Li* + AIFS™ = 3Li+ + AIF; + 2F~
(l—a)-zl @, 20:-:1:1

where o is the degree of dissociation of AIF3™, 0 < oo < 1,
x1 is the mole fraction of the lithium cryolite LigAlFg in the system under
consideration.

Thus one molecule LigAlF, brings together four new particles into the molten MgF,
(i.e. three ions Lit, (1 — «) - AIF3~ and « - AlFj), then

AS%r, = 9 cal deg~2 mole-! < 8R 2 16 cal deg—! mole-!

the condition for the existence of the inflexion point is satisfied and hence on the
liquidus curve of MgFy in the system LigAlFg—MgF; an inflexion point appears
[11]. This confirms at least the qualitative correctness and applicability of the model
of ideal ionic solutions even when z; differs considerably from 1.

References

. Malinovsky M., Chem. Zvesti 23, 801 (1969).
2. Héla E., Reiser A., Fystkdlni chemie I. Publishing House of the Czechoslovak Academy
of Sciences, Prague, 1960.
3. Prigogine I., Defay R., Chemische Thermodynamik. VEB Deutscher Verlag f. Grund-
stoffindustrie, Leipzig, 1962.
4. Karapetjanc M. Ch., Chimideskaja termodinamika, 2nd Ed. Goschimizdat, Moscow,
1953.
. Janz G. J., Molten Salts Handbook. Academic Press, New York, 1967.
. Delbove Fr., C. R. Acad. Sci. (Paris) 252, 2192 (1961).
. Rogers P. S., Tomlison J. W., Richardson F. D., Met. Soc. Conf. 8, 909 (1961).
. Glusko V.P. (Ed.), Termodinamideskije svojstva individualnych vedéestv I1. Izdatelstvo
Akademii Nauk SSSR, Moscow, 1962.
9. Malinovsky M., Chem. Zvest: 21, 783 (1967).
10. Frank W. B., J. Phys. Chem. 65, 2081 (1961).
11. Kasikové 8., Malinovsky M., Chem. Zvesti, in press.

Translated by V. Sadkové

p—

W T3 O™

Chem, zvesti 23, 809—815 (1969) 815



