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The Temkin model of ideal (perfect) ionic solution is discussed. General 
relations for calculation of activities of individual components of ideal ionic 
solution have been derived. The dependence at = i(xi) for the components of 
binary systems is analyzed both in the case when two substances contain 
identical kind of ions (,,common ions") and when there are not identical 
ions in these substances. The concept of the limiting coefficient is introduced. 
The numerical value of this coefficient is identical with the Stortenbeker 
correction factor in the equation which describes the temperature drop 
of (primary) crystallization of the pure component from the solution of the 
given composition. 

Although equations describing liquidus curves of components of ideal systems 
have been formulated long ago [1—3], hardly any attention was paid to problems 
of liquidus curves of components of solutions which consisted solely of ions. The 
first paper dealing with this problem was published in 1938 by Herasymenko [4]. 
Nevertheless, the paper by Temkin [5] aroused greatest interest since in it criteria 
for ideal (perfect) ionic solution were formulated and the author established the 
dependence of activities of constituents of the solution on concentration expressed 
in the so-called ionic fractions. He used for this purpose the ternary reciprocal 
system Ca2+, Fe 2 +/ /0 2 - , S2~. But he neither did show the possibility of using the 
relation at = f (a*) for cryoscopic investigation of systems, nor did he analyze the 
rules which determine the course of the liquidus curves of the constituents of those 
systems which behave like ideal ionic solutions. 

The concept of ideal ionic solution found its successful application in the special 
field of calculation of the liquidus curve of primary crystallization of ionic constitu
ents in different systems, while the dependence of their activities on concentration 
is expressed according to Temkin's suggestions. Voskresenskaja and Frohberg [6, 7] 
and part ly also Babuskin et cl. [8] deal with these problems in their papers, though, 
no principally new ideas can be found in their publications. We even find sometimes 
an incorrect determination of the relationship (ц = i(wi) [9]. Since the model of ideal 
ionic solution is being often applied to different categories of molten systems 
[10—15], we find it advisable to discuss these problems in details. 

1. Establishing of general equations for calculation of the activities 
of constituents of ideal ionic solutions 

The Temkin model is based on following assumptions: 
I . The liquid solution and its components as well consist solely of ions (simple 

or complex). Electrically neutral particles (e.g. molecules), are not present. 
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I I . Since in the investigated solution the concentration of electrically charged 
ions is relatively high, considerable forces of electrostatic character arise there. 
Consequently, the structure of the liquid solution resembles t h a t of the solid crystal, 
i.e. each ion is surrounded by ions of opposite polarity. 

This, however, rules out the exchange a cation for an anion in its position a n d 
vice versa. The solution as a whole can be considered as if consisting of two different, 
though inseparable solutions of cations and anions. Consequently each ion can 
change position within its „ o w n " solution only. 

I I I . Within their own solutions all ions are equivalent, disregarding the magnitude 
of their electrical charge. For this reason their statistical distribution can take place 
without any limitations. 

Hence it follows t h a t : 
A. The enthalpies of mixing of the cationic as well as of anionic solutions are 

zero, i.e. AH$X = 0, AH{~^X = 0 and consequently the enthalpy of mixing of the 
whole solution AHmix = 0. 

B. The entropies of mixing of the cationic and anionic solution Zl/Sj^, AS(^\X 

have solely a configurative character. 
This means t h a t in the equation 

AGmix = AHmiK - T ASmix (1) 

only the correction of the term T ASmix, comparing with the value in an ideal non -
-ionic solution, takes place. The term AHm\x is supposed to be zero as in the case of 
an ideal non-ionic solution. 

Let us consider a system in which there are the constituents MpAq, N r B^, M 5 B V 

and NeAd (M<+), N<+> are cations, A<-), B<_) are anions, the magnitude of electrical 
charge is irrelevant). 

These constituents dissociate according to the schemes 

MpAq -> pW+i + gA<->, 
N r B ř -> rN(+) + iB(-), 
MeB„ -> sM<+> + vB(-), 
NeAtf -> eN<+> + dA(-). 

Let us assume t h a t a system consisting of these substances contains solely ions 
formed according to the above equations. Let the number of moles of the first, 
second, third and fourth substance be ni, n^, 113, and 714, respectively. Then (п\ -\-
+ 712 + ^3 + ^4) moles of mixture of these four substances will contain 

(niP + nss) moles M(+), 
(n2r + nAe) moles N<+>, 
(niQ + n*d) moles A(~>, 
(n2t + nzv) moles B<->. 

The number of possibilities P j for the realization of the state of liquid phase 
consisting solely of cations M(+) or of cations N(+) can be expressed by equations 

Pi[M<+>] = 1; Pi[N.(+>] = 1. 

For the number of possibilities to form a common solution of cations from these 
two pure phases the following is valid 
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p(+) = WfaP + U*S + П*Г + П*е>] ! /m 
[iV(niP + w3s)]! [JV(n2r + n 4e)]! 

where 2V is the Avogadro number. 
The thermodynamic probability of the formation of cationic solution W$x from 

phases constituted by cations M<+) and N<+) is expressed by the equation 

W& = ^ = P i ť - (3) 
Pi[M(+)] • Pi[N<+>] 

By analogy, for thermodynamic probability of formation of anionic solution 
"Fornix from pure phases constituted by anions A<~) and B(~> we can write 

_ [ATfojg + nAd + n2t + nzv)]! 
"mix - ' W 

[N(nxq + M ) ] ! № W + w8ü)]! 

The expressions for И ^ х , W^x can be simplified using the Stirling formula. 
We obtain 

In Wtib = —iV[nx • In яМ(+) 4- n 3 •In жМ(+) 4- n 2 •In ж̂ <+) + ^4 * hi xy+y], (5) 

In WUx = — ЛГ[пх • In жА<-> + ^4 * hi яА(-) 4- n 2 • In a^(-) + n 3 • In a%(->]. (6) 

Using the Boltzmann formula S = k • In W, we get for the entropy of mixing of 
the whole solution 

*Smlx = AS% + AS& = k[]n F J & + In H*3J 

and substituting from eq. (J) and (6) we have 

4£mix = —R\nx • In ЖМ(+) • ЖА<-) + n 2 • In Ж̂ (+) • Ж (̂-) + 

-f- Щ • In ÍC51(+) • я?в<-) 4- ^4 ' In ж̂<+> • жА<->] . 

Then Ave have for the free enthalpy of the solution Gu 

Gu = п х Я ; + п 2Я° + п 3Я° 4- náH°á - njTSl - n.2TSl - nzTSl - n^TS* + 

+ RTfa • In жМ(+) • яА<-> + rc2 • In а̂ <+> • xl

B(-) 4- w3 • In жМ(+) • ж|<-> 4- пл • In я^ ( +, • жд<-)] (7) 

and hence the chemical potentials [ц of individual substances are 

dGu 
A*i = = /4 + RT-]n xfo+) • жА<-,, 

fi2 = = ß4. + ^ T * l n яг̂ (+) • ít^(-), 
дп2 

Мз = — " = /*з + RT • ln ÍCM(+) • aj<-,, 

dGu 
H* = = MÍ + RT • In ай(+) • <(->. 

čn4 
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Comparing with the relation [ц = $ + RT • In щ we obtain 

ам,Ав = жм<+> * Ж

А (-), (8a) 

а м . в „ = *M<+> • *в<->> (Ac) 

«NeA, = ж!т("> * «!<-) > (&*) 

where t h e symbols агм(+), ЗД<+), # A ( ~ ^ # B ( _ ) designate the ionic fractions of the 
respective kind of ions in the system under consideration. 

By the above procedure we get equations for the activities of all four constituents 
of the ternary reciprocal system 

M<+>, N(+>//A<->, B<->. 

I n case when the expression (ц = f(rr^) should be used in the equation for calcu
lation of the liquidus curves of the given substance in a binary system, it suffices 
to consider the formation of the solution of such two substances which form together 
a simple eutectic system; the calculation procedure is identical. 

2. General rules concerning the dependence <ц = f(xi) 

2.1. Systems with one common ion 

Let us consider the binary system Жрка— N r A ř whose components dissociate 
according to the schemes 

MpAq -> i>M(+) + gA<-), 
N rA ř -> rN(+) + iA<->. 

Let the mole fraction of the substance M^A^ in this system be x± and the mole 
fraction of the substance N r A ř let be x^. 

According to equation (8a) the following is valid for the activity of the first of 
these components 

*М„А, = *M<+> • *!<-> 
pxx.+ rx2\ lqxx + tx2\ 

Since xi 4• X2 = 1 

For a N r A t л^е obtain 

= Г УЖ1 у = Г pxi у 

IP^i + r(l — хг)\ l r + (p — r)x1 J 

Г rx2 у 
«NrA, = * 

L P + {r - p)x2 J 

(9) 

(10) 

F r o m t h e equations (9) and (10) it follows t h a t in systems with a common ion the 
act iv i ty equals directly the mole fraction only when p = r = 1; then 

aMpA«, = x l ' °NrAt = x2 • 

The value of coefficients of the common ion (i.e. q or t), is irrelevant. 
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When p = r (p. r are evidently integers), then 

aMpAg

 = x l 5 aNrAt = x2 = x2 • 

The values of the coefficients q and t are irrelevant. 

2.2. Systems without common ion 

We consider the binary system MpA^—N r B r . We assume the complete dissociation 
of components according to the schemes 

MpAg -> pM<+> + gA(-), 
N rBi -> rN<+> + iB<->. 

Let the mole fractions of the substances M p A g and NrB« be x\ and x%, respectively. 
Then 

aM„A. = 4 w ' Xk-> = • 
l рхг + rx2 J |_ да?! -f- to2 J 

or eliminating #2 

[r + x^p-r)] {t + x^q - t)\ 

By analogy we find t h a t 

[ rx2 V \ tx2 V 
• * (Щ 

p + x2(r - p)\ I q + x2(t - q) J 

I n some special cases these relationships can be simplified. Thus, e.g., when p = 
= д = r = í = 1 (i.e. when we have the system MA—NB) 

flMA = XÍ', ßNB = Xo. 

When p = r = 1, q = t = 2 (i.e. in the system MA2—NB2) or p = r = 2. q = 
= t = 1 (i.e. in the system M 2 A—N2B) 

OMA, = &M2A = X1 ; CřNB2 = ÖNoB = # 2 • 

When p = r. q = t, then 

aMpAe = Xí+Qý a N , B e
 = х2 • 

3. The limiting coefficient 

For any ideal solution over the whole range of concentration a n d a t all tempera
tures and pressures we have a$ = Xi [16, p . 253], where a% is the act iv i ty of the i t h 
substance in the given solution. For standard state we take the s ta te of pure i t h 
substance at the same temperature and in the same state as the solution under 
investigation, i.e. ai = x\ wrhen x% = 1. We assume t h a t our system is under a 
constant pressure which is greater t h a n the vapour pressure within the considered 
temperature interval. 
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In case of non-ideal solution, in general it is valid tha t Xf ф 1, a$ Ф Xf. When 
xi approaches the value of unity, then the difference between a% and x\ diminishes 
constantly. Frohberg [7] called them the solutions of,,the first k ind" . The approach
ing of values щ and x% for xt near to unity means t h a t the linear dependence 
Xi = i(xi), and the dependence a± = i(xi) (in general case a non-linear dependence), 
practically coincide a t a sufficiently high value of x%, or, a t least they have a common 
tangent for x% -> 1. These relations can be simply expressed 

da* 
lim — - = 1. (13) 

XÍ-*I dxi 

We shall call the term on the loft-hand side of the equation (13) ,,the limiting 
coefficient of iih substance". 

For an ideal solution the value of the ratio aaijaxf natural ly equals unity a t all 
values of Xf,T and P , and consequently, the equation (13) is also valid for the ideal 
solution. Hence it is typical for solutions of the first kind, ideal or non-ideal, t h a t 
they satisfy the equation (13). 

I n case of ionic solutions of fused electrolytes we have, however, a quite different 
situation. Thus, e.g., in binary systems of the type M p A g — N r A ř with a common ion, 
we find by derivation of the equations (9) and (10) with respect to x\ and x^, re
spectively, and by setting #i(x2) = 1» t h a t the limiting coefficients are 
for Mp Ag: 

d a t 
lim -=r: (14) 

Xi^-i dxl 

for N r A ř : 

lim = p- (15) 
2-2-»i dx2 

I n binary systems of the type M^A«?—NrBř we find by analogy t h a t 

for MpAq: 

f o r N r B ; : 

da, 
lim = r + t; (16) 

d a 2 
lim = p + q. (17) 

a w l cue«, 

I n Fig. 1 we see the course of the function ai = Í(XÍ) for an ideal solution, for 
a non-ideal solution of the first kind and for an ideal solution of the second kind 
(for the component N B in the system M3A—NB). The tangent to the curve « N B = 
= f(#NB) for % в = 1 is also shown. For the slope of this tangent it holds t h a t 

j . . d a N B 

к = lim = 4 . 
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Fig. 1. The course of the function щ = í(x%). 
1. relationship ai = Xi for ideal solution; 2. relationship щ = Í(XÍ) for non-ideal solution 
of the first kind; 3. relationship a* = Í(XÍ) for ideal solution of the second kind, xt = »NB 
in the system M3A—NB; 4. slope of the tangent to the curve ÖNB = f(#NB) in the system 

M3A—NB at :ENB -> 1. 

In general the following is valid for the solutions of fused electrolytes 

dat 
lim ф 1. 

Xi-±i dxi 

(18) 

This inequality is typical for the given category of solutions. Frohberg stressed 
[7] t h a t they did not obey the Raoult and Henry laws and for this reason he called 
them solutions „of the second k i n d " . 

From the equations (14) and (17) it follows t h a t in individual cases the values 
of limiting coefficients are numerically equal to the number of new (foreign) particles, 
which, in the course of the above described dissociation, have been introduced into 
the system (e.g. the substance M^A^), by one molecule of the substance N r A ř or 
N r B ř or, more general, the number of new particles which appear in the system of > 
pure MpAq due to introducing of one molecule of the substance N r A ř or N r B ř . Con
sequently the limiting coefficients are identical with the Stortenbeker correction 
factors kst. These factors [17] are used in equations for calculation of temperature 
decrease of the primary crystallization of the substance Q(Z) achieved by the addition 
of substance Z(Q), when substances Q and Z are electrolytes: 

ЛТп = K% ' mZ ' kz/Q (19) 

where AT Q is the temperature decrease of primary crystallization of the substance Q, 
KQ is the cryoscopic constant of the substance Q, 
mz is the molal concentration of the substance Z in the system Q—Z9 

k^JQ is the Stortenbeker correction factor for the substance Z with regard to the 
system Q—Z. 
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Then in the system Q—Z it is 

and 

Ф x, (0 < x2 < 1) 

lim __ö_ = kf/Q {20) 
XQ -> l Ö.XQ 

da7 a. 
lim—^-^kflz. (21) 

xz-+i dxz 

With the aid of the model of ideal ionic solutions the Stortenbeker correction fac
tors can be easily derived. 

Finally we want to point out tha t when at = Xi. then the limiting coefficient 
equals one. When, on the other hand, a% ф x\ (xi < 1). the limiting coefficient mostly 
differs from one, but in some cases it can equal one. 

Thus, e.g., in tht systems of the type MA—N r A 

[ rx* 1 T 

" 
1 +x2(r- 1)J 

but 

da о 
lim = 1 -

•Хг-* 1 dx2 

This is in accord with the fact, t h a t one molecule of the substance MA introduces 
only one new particle, i.e. the ion M(+) into the fused N r A. 
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